Термояду.нет  
24 Октябрь 2020, 06:09:08 *
Добро пожаловать, Гость. Пожалуйста, войдите или зарегистрируйтесь.

Войти
Новости: Большинство функций форума доступны только после регистрации
 
  Начало Помощь Поиск Войти Регистрация  
  Просмотр сообщений
Страниц: [1] 2 3 ... 137
1  Обсуждение / Проект ИТЭР/ITER / Re: Предмет обсуждения : 21 Октябрь 2020, 16:50:47
К 35-летию договорённостей по ИТЭР между СССР и США (продолжение)...
Мир без нефти и урана. Вклад России в важнейший проект мировой энергетики

09:00 20.10.2020 (обновлено: 13:36 21.10.2020)
 
Проект ИТЭР (Международный термоядерный экспериментальный реактор), как уверены ученые, позволит человечеству получить новый экологичный и безопасный источник энергии, использующий практически неиссякаемые запасы топлива, один грамм которого эквивалентен минимум десяти тоннам углеводородов. Летом 2020 года руководители государств-участников дали старт сооружению основного элемента будущего реактора – токамака, то есть системы удержания и нагрева плазмы. О вкладе российских ученых в один из самых масштабных проектов человечества в области энергетики – в новом материале РИА Новости.

Мир термоядерной энергии

Термоядерные реакции протекают с выделением огромной энергии, однако плазма, в которой идут эти реакции, имеет температуру в десятки и сотни миллионов градусов – притом, что самые термостойкие материалы выдерживают не более 3-4 тысяч градусов.

Использовать термоядерную энергию можно, если "оторвать" плазму от стенок реактора за счет сильных магнитных полей, объяснили ученые. Лучшая магнитная ловушка для термоядерной плазмы – токамак – была предложена советскими академиками Сахаровым и Таммом в начале 1950-х годов и впервые создана в Курчатовском институте.

В термоядерном реакторе, в отличие от атомного, происходит не деление ядер, а их синтез при плотности плазмы в сто тысяч раз меньше, чем плотность воздуха. Благодаря этому взрыв невозможен, подчеркнули ученые, что делает реактор принципиально безопасным. Продуктами работы такого реактора будут безвредный гелий и тритий, использующийся затем для поддержания самой реакции.

”ИТЭР – ворота в термоядерную энергетику, через которые мир должен пройти". Эти слова принадлежат инициатору проекта, почетному президенту Курчатовского института, академику Евгению Велихову. Задача ИТЭР, идея создания которого была выдвинута в середине 1980-х годов, заключается в демонстрации возможности использования термоядерной энергии в промышленных масштабах.

В настоящее время в проекте семь участников: Европейский Союз, Индия, Китай, Республика Корея, Россия, США и Япония. Штаб-квартира ИТЭР расположена в Кадараше, Франция, неподалеку от строительной площадки.

Кроме фундаментального идейного и инженерного вклада, ИТЭР, по словам ученых, уже обязан России разработкой ряда ключевых элементов, среди которых самый совершенный сверхпроводящий кабель и лучшие в мире гиротроны – устройства для нагрева плазмы электромагнитным излучением сверхвысокой частоты.

Трудная задача с тритием

В качестве топлива в ИТЭР будет использована смесь изотопов водорода – дейтерия и трития.

Дейтерий можно относительно легко производить из воды, а тритий будет воспроизводиться в самом термоядерном реакторе. ИТЭР, как экспериментальная установка, еще не будет производить электроэнергию, но на коммерческих термоядерных реакторах, по расчетам ученых, один грамм топлива будет давать столько же энергии, сколько сейчас дают от 10 до 20 тонн углеводородов.

Один из рисков в работе реактора будет заключаться в накоплении радиоактивного трития в разрядной камере токамака, поэтому его количество ограничено стандартами безопасности.

Материалы внутренней стенки камеры – вольфрам и бериллий – не накапливают много трития, но тем не менее, как объяснили ученые, для стабильной работы реактора необходимы методы регулярного дистанционного контроля уровня трития.

Суммарное количество этого изотопа в камере можно определить из баланса поступившего и откачанного газа. Для более точного локального измерения его содержания в стенках реактора ученые решили использовать лазерное излучение: под его воздействием будет происходить своего рода "испарение" поверхностного слоя стенки с последующим захватом и анализом образовавшихся частиц.

Решением этой ключевой проблемы будет заниматься специально созданная в 2020 году в Институте лазерных и плазменных технологий НИЯУ МИФИ лаборатория под руководством молодого ученого, доцента кафедры физики плазмы Юрия Гаспаряна.

"Наша задача – научиться измерять концентрацию легких и очень подвижных изотопов водорода при минимально возможном воздействии на стенку реактора. Испытания запланированы как на лабораторных установках, так и на токамаке Глобус-М2 в ФТИ имени А.Ф. Иоффе", – рассказал ученый.

Опасная пыль

Идея магнитной термоизоляции плазмы в тороидальном, то есть "бубликовидном", магнитном поле, лежащая в основе токамака, как объяснили ученые НИЯУ МИФИ, все же не исключает попадания частиц и излучения на стенки реактора. Под их воздействием от стенок будут отделяться макроскопические продукты эрозии, или, проще говоря, пыль.

Расчеты физиков показывают, что частицы пыли будут собираться на дне разрядной камеры токамака, что представляет опасность для реактора: пыль сама по себе пожароопасна, а кроме того она активно накапливает радиоактивный тритий.

Для того, чтобы контролировать количество и состав пыли, не останавливая реактор, группа ученых НИЯУ МИФИ во главе с профессором Леоном Беграмбековым предложила использовать особый зонд с приложенным к нему электрическим потенциалом.

В электрическом поле между зондом и поверхностью стенки крупинки пыли будут электризоваться и притягиваться в специальный приемник. Перемещаясь над поверхностью, зонд как пылесос будет собирать пыль, перемещая ее затем из реактора через специальные шлюзы.

Научный авангард

В центральной команде проекта в Кадараше работают тысяча сто специалистов из всех стран-участниц, и еще несколько десятков тысяч ученых и инженеров трудятся в домашних командах.
"НИЯУ МИФИ и, в частности, кафедра физики плазмы – один из активных участников проекта, в том числе и в подготовке кадров. Более полувека наша кафедра готовит специалистов в области физики горячей плазмы и управляемого термоядерного синтеза. Наши выпускники трудятся как в центральной, так и в домашней командах ИТЭР, а география наших коллабораций простирается почти по всей планете", – рассказал заведующий кафедрой физики плазмы НИЯУ МИФИ Валерий Курнаев.

За время существования кафедры ее специалистами были созданы установки, позволяющие исследовать взаимодействие плазмы и ее компонентов (ионов, электронов, нейтральных атомов) с различными материалами. Были разработаны теории и коды для описания этих процессов и подготовлено большое число ученых.

Среди работ, уже выполненных специалистами кафедры для ИТЭР, создание метода спектроскопического обнаружения протечек воды в плазму из охлаждаемых элементов первой стенки реактора, разработка методик для изучения воздействия чистящего тлеющего разряда на первые зеркала диагностических лазерных систем, а также создание предохранительных экранов для коллекторов электромагнитного излучения.

https://ria.ru/20201020/iter-1580507723.html.

Предыстория здесь: http://www.termoyadu.net/index.php?topic=7.msg3478#msg3478.

Повторюсь. 80% энергии термоядерного синтеза для реакции DT выделяется в виде быстролетящих нейтронов, которые порождают вторичное гамма-излучение и активируют материалы конструкции реактора. Это обстоятельство ставит "крест" на термоядерных реакторах, работающих на дейтерий-тритиевой смеси. В своё время именно при попытке достичь точку безубыточности, работая на D-T смеси, вышел из строя и позже был утилизирован американский (принстонский) токамак TFTR: https://ru.qwe.wiki/wiki/Tokamak_Fusion_Test_Reactor.
ИТЭР - не исключение: https://izborskiy-club.livejournal.com/596736.html.

Далее. Не от хорошей жизни устами директора российскрго Центра проекта ИТЭР Анатолия Красильникова в РФ провозглашено гибридное будущее термояда: http://www.termoyadu.net/index.php?topic=6.msg3424#msg3424.
Инициатива принадлежит академику Велихову, который ещё лет десять тому назад предложил куда подальше задвинуть "чистый" термояд и заняться "гибридом": http://www.termoyadu.net/index.php?topic=684.msg2324#msg2324, https://polit.ru/article/2012/12/18/ps_hybrid_tokamak/.
Идея гибридного реактора вполне себе реализуема, и, по мнению Красильникова, его создание - "это только вопрос времени, проектирования, лицензирования, подбора оптимальных материалов".

И ещё. Изобретённый в нашей стране токамак изначально был всего лишь источником быстрых, высокоэнергетических нейтронов, поэтому сразу надо было искать применение ему (токамаку) именно в этом качестве, а не пытаться придать ему функции атомного реактора. Упущено время, потрачены средства, а в итоге (в сухом остатке!) всего лишь "гибрид", которому ещё надо будет постараться, чтобы найти себе место среди успешно освоенных реакторов на быстрых нейтронах: http://www.termoyadu.net/index.php?topic=6.msg2768#msg2768.

                                                                                              Ф.Х.Ялышев, изобретатель,
                                                                                        выпускник МВТУ им. Н.Э.Баумана, 1971г.
2  Обсуждение / Проект ИТЭР/ITER / Re: Предмет обсуждения : 04 Октябрь 2020, 09:02:25
К 35-летию договорённостей по ИТЭР между СССР и США...
Афера века — проект ИТЭР | Куда плывет «горячий термояд»?

... Международный экспериментальный термоядерный реактор (проект ITER) считается одним из наиболее сложных сооружений в истории. История его восходит к 1985 году, когда прошел первый саммит Рейгана и Горбачева, на котором было принято решение о сотрудничестве в сфере термоядерных исследований. Других "точек соприкосновения" у Горбачева с Рейганом просто не нашлось.

В проекте ИТЭР участвуют ЕС, США, Россия, Китай, Индия, Япония, Корея и Казахстан. Ранее стоимость проекта оценивалась в 4,6 миллиардов евро, потом она возросла до 10, теперь она достигла 20 миллиардов. Возможно, и даже вероятно, что она будет расти и дальше. В прошлом году руководство ИТЭР отрапортовало о 50% готовности, что оно расценило как довольно высокий процент, и сигнал о том, что "проект осуществим". По его оценкам, реактор может начать работу до конца 2025 года, а еще десять лет спустя, в 2035 – сможет... выйти на проектные параметры. Удастся ли уложиться в намеченные сроки, есть сомнения, поскольку все эти десятилетия проект развивался очень медленно, и сегодня (напомню, что ему уже более 30 лет) отстает от своего графика на 6 лет.

Возникли и политические сложности. Соединенные Штаты то выходили из проекта, то снова вступали в него, а в прошлом году администрация президента Д.Трампа внезапно урезала свое, и без того довольно скромное финансирование, возобновив его только весной 2018 - около 120 миллионов долларов в год. Большую часть расходов, 45%, несет Евросоюз, это порядка полумиллиарда евро ежегодно.

ИТЭР столкнулся не только с финансовыми трудностями. С самого начала проект критиковали по разным направлениям. Сомнения вызывала стойкость используемых материалов, наведенная радиоактивность, необходимость огромных капиталовложений, а французская ассоциация противников ядерной энергетики со звучным названием Sortir du nucléaire заявила, что проект опасен потому, что ученые просто не понимают, как управлять плазмой при столь высокой температуре.

С критическими заявлениями выступили и европейские «зеленые». Депутат европарламента Ребекка Хармс заявила, что средства, потраченные на проект, можно было бы направить и на более перспективные направления. Кроме того, даже в перспективе реактор ИТЭР не может стать коммерчески успешным, его конструкция не предусматривает выработку электроэнергии, только тепло, то есть, потребляя высокачественную энергию, он будет превращать ее в энергию более низкого качества, тепловую.

Однако наиболее последовательную критику проекта дал Стивен Кривит (Steven B. Krivit), редактор популярного ресурса New Energy Times и автор нескольких книг по истории науки и LENR-проблематике. 17 июня 2018 он отправил открытое письмо Нику Холлоуэю, менеджеру британского центра по термоядерной энергии (The Culham Centre for Fusion Energy). В письме он попросил убрать с сайта из и из официальных документов ошибочную трактовку ранее проведенных экспериментов, которую используют в пропагандистских целях, рисуя радужные перспективы горячего термояда.

Прежде всего, С.Кривит указал на то, что уже долгие годы намеренно, и в разы, занижаются объемы энергии, потребляемые термоядерными реакторами, а они огромны.  Анализ прежних экспериментов показывает, что ни одна из сотни экспериментальных установок не вырабатывала хотя бы столько энергии, сколько потребляет, не говоря об избыточной. В частности, идет прямой обман: руководство проекта ИТЭР заявляет, что реактор  будет, как ожидается, вырабатывать 500 мегаватт тепловой энергии, но потреблять при этом он будет, как выяснил С.Кривит, вовсе не 50 мегаватт , а 300 мегаватт электричества, то есть в 6 раз больше. Таким образом, он будет вырабатывать (если еще будет), всего в 1,8 раза больше, чем потребляет. Если же учесть то, что он будет вырабатывать не электричество, а тепло, то и эту цифру нужно умножить на 0,4, то есть обычный кпд используемых генераторов. Таким образом, выигрыша в энергии вообще никогда не будет. Что касается коммерческих перспектив, то ИТЭР не способен окупиться даже в принципе.

Британский центр по ядерной энергии не ответил на критику, но все же изменил текст на сайте на более мягкую формулировку, и уже не утверждает, что ИТЭР будет производить в 10 раз больше энергии, чем потребляет.  Впрочем, это лишь одинокий пример успеха, причем более чем скромного – международный термоядерный проект продолжается, несмотря на усиливающийся скепсис наблюдателей из-за растущей дороговизны проекта ИТЭР, его громоздкости и все более сомнительных перспектив.

Но есть и еще одно обстоятельство, о котором сторонники "горячего термояда" предпочитают умалчивать. Это успехи, которые делает команда Андреа Росси, планирующая уже в начале следующего года выйти на рынок с семейством генераторов на LENR (холодном термояде) типа Ecat-QX и Ecat-SK.  Недавно А.Росси заявил об успешной работе на генератором нового типа, причем мегаваттной мощности.

Эти, а также иные обстоятельства, вызывают вопрос – суждено ли проекту ИТЭР вообще завершиться? Не суждено ли ему стать всего лишь одним из монструозных прожектов эпохи, уходящей в прошлое, вроде идеи "поворота сибирских рек"? Как гласит английская поговорка, Time will tell - время покажет.

А.Маклаков

29.05.2020 

https://congeniator.com/afera-veka-proekt-iter-kuda-plyvet-gorjachij-termojad/,
https://ria.ru/20151119/1322811722.html, https://lenta.ru/news/2020/07/28/iter/.

P.S. ITER - индийские проблемы: более 135 млн долларов долга
http://atominfo.ru/newsz02/a0272.htm.
3  Обсуждение / Управляемый термоядерный синтез / Re: Предмет обсуждения : 12 Сентябрь 2020, 11:26:19
Солнце — в бутылку!

Как люди пытаются освоить термоядерный синтез и почему проект ИТЭР играет в этом ключевую роль

В 60-е годы ХХ века потребности человечества в энергии выросли. Чтобы удовлетворить их, ученые обратились к идее освоения термоядерной энергии. Она получается в результате слияния легких атомов в более тяжелые. Энергия звезд. N + 1 вместе с ГК «Росатом» разобрались, куда сегодня зашли эти идеи и где в них место проекту ИТЭР.

Содержания изотопа водорода дейтерия в океанах хватит на 150 миллионов лет потребления цивилизацией. Реакция слияния изотопов водорода в гелий примерно в 5 миллионов раз более энергоемка, нежели горение углеводородов. В середине прошлого века идея казалось понятной и простой. Перед учеными маячила перспектива почти мгновенной разработки и освоение другой атомной энергии — деления.

Калейдоскоп концепций

К середине ХХ века дейтерий активно использовали в лабораторной физике и химии, но получению из него энергии мешали физические сложности. Наиболее простой способ — ядерная реакция слияния (или синтеза) D +T -> He4 + n + 17,6 МэВ, где D и T — тяжелые изотопы водорода, He4 — получившийся обычный гелий, n — нейтрон и 17,6 — выделившаяся энергия.

К сожалению, в отличие от химических, в пробирке такая реакция не происходит. Зато неплохо идет, если смесь трития и дейтерия нагреть до 100 и более миллионов градусов. Тогда атомы начинают двигаться с такой скоростью, что при столкновении по инерции преодолевают силы кулоновского отталкивания и сливаются в гелий. Энергия выделяется в виде осколков: очень быстрого нейтрона, уносящего 80 процентов энергии, и чуть менее быстрого ядра гелия (альфа-частицы). Разумеется, при «рабочей» температуре все вещество — плазма, состоящая из ионов и электронов. Любой осевший электрон будет потерян при первом же столкновении столь энергично движущегося вещества.

За 1950-е и 1960-е годы были выдвинуты десятки предложений, как именно должен выглядеть реактор с такой плазмой. В основном речь шла об удержании плазмы из дейтерия и трития магнитным полем различных конфигураций, а также балансировкой утечки тепла искусственным подогревом различными методами и выделяющейся термоядерной энергией. Физики придумали линейные разряды с самообжимом Z-pinch, цилиндрические магнитные «емкости» с открытыми концами «открытые ловушки», тороидальные камеры с магнитными катушками «токамаки», петлевые «стеллараторы», варианты с самоподдерживаемыми вихрями — сферомаки и FRC и множество других.

Быстро выяснилось, что физика установок очень непроста. Ученые столкнулись с тремя главными проблемами:

  -  Коллективные явления в плазме. Четвертое состояние вещества отличается крайне сложным поведением. Обусловлено это тем, что заряженные частицы «‎чувствуют» друг друга через электрические и магнитные поля. Наличие многих степеней свободы, совокупность кинетических, магнитных, электрических явлений приводили к тому, что плазмой было сложно управлять, сложно считать и сложно прогнозировать. В экспериментах по управлению плазменными образованиями постоянно всплывали неприятные особенности.

  -  Абстрактная «сложность поведения» при попытке создать термоядерный реактор вылилась в класс явлений, названных «неустойчивостями плазмы». Плазменные шнуры под воздействием магнитных полей извивались и перекручивались. В них возбуждались высокочастотные колебания плотности, тока и выбрасывались пучки электронов. Сейчас известно порядка 200 типов неустойчивостей, которые ограничивают возможности по созданию разных типов реакторов. Так, например, популярные в 1950-х конфигурации линейного разряд Z-pinch «умерли» именно из-за открывшихся неустойчивостей.

  -  Кроме «новой физики», которая была открыта в плазме при попытке быстро получить термоядерный реактор, никуда не делась классическая проблема теплоизоляции. Нагретое вещество теряет тепло, даже будучи подвешенным в вакууме магнитным полем, через излучение. Здесь природа впервые улыбнулась ученым: если бы для полностью ионизированной плазмы продолжал действовать закон Стефана-Больцмана, при котором мощность излучения зависит от температуры как ~T4, даже термоядерное горение не способно было бы преодолеть потерю тепла. Однако, если от атома оторвать все электроны, этот закон перестает работать. На практике, впрочем, выяснилось, что все атомы тяжелее кислорода в термоядерной плазме ионизированы не полностью и сливают тепло с большой скоростью. Так в термоядерные установки пришли культура ультравакуумной чистоты и материалы с малым z (например, углерод, литий и бериллий). Вторым путем «‎слива» энергии из плазмы были неустойчивости, переводящие кинетическую энергию в электромагнитное излучение. Как результат, первые 30 лет создания установок управляемого термоядерного синтеза — это история борьбы за рекорд температуры.

Новая надежда

В 1968 году советские ученые заявили, что в тороидальной плазменной ловушке типа ТОКАМАК, изобретенной пятнадцатью годами ранее Андреем Сахаровым и Игорем Таммом, вещество удалось нагреть до 10 миллионов градусов. Это значение температуры в несколько раз превышало рекорды других установок. Начавшая подувядать идея освоения термоядерной энергии, к тому моменту 15 лет барахтавшаяся в проблемах, получила второе дыхание. Токамаки по советским лекалам начали строить по всему миру. К 1978 году американские, европейские, советские и японские токамаки, соревнуясь между собой, достигли рубежа в 100 миллионов градусов — пусть при плотности, недостаточной для обеспечения баланса самоподдерживающегося горения, пусть на десятки миллисекунд — но достигли.

В 1982 в немецком токамаке ASDEX открыли H-режим (H-mode) — явление, когда внутренняя турбулентность в плазменном шнуре теплоизолирует его центральную часть и позволяет более «дешево» получать нужную температуру и давление. Следующее поколение токамаков, построенное к концу 1980-х, европейский JET и американский TFTR, впервые в истории человечества получило ощутимые мощности управляемого термоядерного горения — 16 и 10 мегаватт. Это была скорее демонстрация возможностей, нежели веха. Стало понятно, что основные физические сложности наконец преодолены.

Именно в этот момент рождается идея ИТЭР (ITER — акроним от «‎международный термоядерный экспериментальный реактор»). Это первый токамак, на котором должна быть получена промышленная термоядерная мощность (до 500 мегаватт) в течении промышленного же времени (400 секунд — это число могло быть и больше, но увеличило бы расходы на установку).

Однако есть проблема. ИТЭР — это самая сложная машина в мире. Она включает более миллиона компонентов, большинство из которых должны быть произведены с характеристиками, превышающие рекорды начала 1990-х. Как следствие, это и самая дорогая научная установка в мире, расходы создание и поддержание работы которой не способна позволить ни одна страна. Именно поэтому ИТЭР собирается силами 35 стран мира: Индии, Китая, России, США, Японии, Южной Кореи и 28 участников Евросоюза. От начала строительства в 2009 году до достижения результата в 500 мегаватт процесс создания установки должен занять не менее 26 лет...

                                                                     .    .    .

Печь для плазмы

Задача ИТЭР — достижение термоядерной мощности плазмы в 10 раз большей, чем мощность подогрева плазмы внешними системами. Подогрев, а точнее управление профилем температуры и тока в плазменном шнуре будет осуществляться тремя системами. Две из них радиочастотные и одна — инжекция нейтральных частиц. К первой плазме успевает только одна — система электронно-циклотронного радиочастотного нагрева (ECRH). Остальные должны быть установлены в ходе постепенного апгрейда и наращивания установки между 2025 и 2035 годами.

ECRH — это радиоизлучение частотой 170 ГГц, поглощающееся электронами плазмы. 24 мегаватта излучения будет создаваться 24 мощными радиолампами — гиротронами, четыре из которых спроектированы, испытаны и поставляются Россией. Для ИТЭР пришлось решить задачу увеличения продолжительности работы мегаваттных гиротронов с пяти до минимум 1000 секунд. Для этого, например, были придуманы алмазные окна для выпуска излучения. На эту подсистему возложена и задача запуска токамака: радиоизлучение будет пробивать газ и превращать его в плазму в начале цикла работы.

ECRH будет дополнена ионно-циклотронной системой (ICRH), так же на радиолампах, однако работающих на частоте 45 мегагерц. Эта подсистема более «конвенциальна», но имеет сложное антенное устройство, направляющее излучение в плазму. Его отработка сейчас ведется на французском токамаке WEST.

Наконец, самой наукоемкой системой станут инжекторы нейтральных частиц, «вдувающих» в плазму «ветер» из дейтерия, летящего на скорости ~1 процента от скорости света. Чтобы получить такой «ветер», необходимо выполнить множество операций. Каждый инжектор состоит из мощнейшего источника положительно заряженных частиц, электростатического ускорителя с потенциалом 1 мегавольт, нейтрализатора и ловушки недонейтрализованных ионов. Гораздо проще (хотя все равно непростой) была бы система из источника ионов и ускорителя, однако магнитное поле, которое удерживает заряженные частицы внутри, не пускает их и снаружи. Отсюда необходимость в превращении ионов в нейтральные атомы. Инжекторы ИТЭР будут сочетать в себе рекордное напряжение в 1 мегавольт с рекордным же током частиц до нейтрализации в 40 ампер.

Еще одним инженерным чудом в составе ИТЭР должны стать диагностические системы. Всего планируется 47 систем, которые будут измерять температуру электронов и ионов, профиль тока и магнитных полей, электромагнитное и нейтронное излучение плазмы, состав ионизированных и нейтральных примесей, равно как и множество других параметров. Они будут собраны в два десятка так называемых «диагностических сборок» — конструкций весом в несколько десятков тонн, которые будут вставлены в порты, предоставляющие доступ к плазме.

Три диагностически сборки и девять научных приборов будут созданы в России. В частности, можно отметить новый цех с «чистой комнатой», сданный в прошлом году в Институте Ядерной Физики под Новосибирском. Там будет собираться диагностическая сборка EP11 длиной 20 метров и весом 150 тонн, включающая восемь научных приборов из четырех стран. Эта сборку первой установят на реакторе. Она будет необходима с первого же запуска для контроля параметров плазмы.

Сложность этих сборок определяется не только передовыми метрологическими параметрами приборов, но и необходимостью работать в условиях сильнейшей нейтронной и гамма-радиации, мощного нагрева и наводимых плазменным шнуром токов, текущих по всем металлическим элементам конструкции. Речь идет о нежной оптике или прецизионных антеннах для микроволн, миллиметровых коллиматорах нейтронного излучения и подобных конструкциях.

И раз уж мы заговорили о нейтронной и гамма радиации, необходимо упомянуть несколько аспектов этого явления. Часть энергии термоядерного синтеза для реакции DT выделяется в виде быстролетящих нейтронов, которые порождают вторичное гамма-излучение и активируют материалы конструкции реактора. Поэтому в плане подходов к безопасности промышленный термоядерный реактор будет ядерной установкой. Однако, в отличии от реакторов деления, ТЯР не создает отработанного ядерного топлива, и объем радионуклидов, оставшихся после жизненного цикла ТЯР, будет в тысячи раз меньше, нежели от традиционного реактора АЭС сопоставимой мощности.

В основном это будут активированные элементы конструкции токамака. При правильном подборе материалов, из которых они изготовлены, можно добиться того, что примерно через 100 лет выдерживания после окончания работы основная масса конструкций потеряет радиоактивность и станет полностью безопасной. В перспективе существует и более безопасные термоядерные реакции — слияния гелия 3 с дейтерием и бора с водородом. Они обладают соответственно в тысячу и десятки тысяч меньшим нейтронным потоком, но требуют для горения недостижимые сегодня условия по температуре и давлению плазмы.

Ждать ли ретробудущее?

ИТЭР не производит впечатления прототипа окупаемой электростанции настоящего. Несмотря на существенную косвенную отдачу проекта (многие разработки для ИТЭР находят свое применение в «гражданских» отраслях), коммерческое использование термоядерной энергии сегодня выглядит перспективой далекого будущего.

Однако это иллюзия. Сумма технологий и знаний о термоядерной плазме и машинах для работы с ней непрерывно растет. В какой-то момент их станет достаточно, чтобы термоядерная энергетика была вписана в рутинный процесс коммерческого инвестирования в развитие технологии. Проект ИТЭР станет важнейшей вехой на пути к этой цели.

Валентин Гибалов

https://nplus1.ru/material/2020/09/07/iter-rosatom.

В дополнение...
- Термоядерный реактор: начало сборки
https://www.kommersant.ru/doc/4501964.
- Самое опасное заблуждение в термоядерной энергетике
https://un-sci.com/ru/2020/10/07/samoe-opasnoe-zabluzhdenie-v-termoyadernoj-energetike/.

P.S. 80% энергии термоядерного синтеза для реакции DT выделяется в виде быстролетящих нейтронов, которые порождают вторичное гамма-излучение и активируют материалы конструкции реактора. Это обстоятельство ставит "крест" на термоядерных реакторах, работающих на дейтерий-тритиевой смеси. В своё время именно при попытке достичь точку безубыточности, работая на D-T смеси, вышел из строя и позже был утилизирован американский (принстонский) токамак TFTR: https://ru.qwe.wiki/wiki/Tokamak_Fusion_Test_Reactor.
Года четыре тому назад в одном из своих интервью уважаемый В.Гибалов тоже не исключил повторения ИТЭРом судьбы TFTR: Пятна «искусственного солнца»: https://izborskiy-club.livejournal.com/596736.html.

P.P.S. Не от хорошей жизни устами директора российскрго Центра проекта ИТЭР Анатолия Красильникова в РФ провозглашено гибридное будущее термояда: http://www.termoyadu.net/index.php?topic=6.msg3424#msg3424.
Инициатива принадлежит академику Велихову, который ещё лет десять тому назад предложил куда подальше задвинуть "чистый" термояд и заняться "гибридом": http://www.termoyadu.net/index.php?topic=684.msg2324#msg2324, https://polit.ru/article/2012/12/18/ps_hybrid_tokamak/.
Идея гибридного реактора вполне себе реализуема, и, по мнению Красильникова, его создание - "это только вопрос времени, проектирования, лицензирования, подбора оптимальных материалов".

P.P.P.S. Изобретённый в нашей стране токамак изначально был всего лишь источником быстрых, высокоэнергетических нейтронов, поэтому сразу надо было искать применение ему (токамаку) именно в этом качестве, а не пытаться придать ему функции атомного реактора. Упущено время, потрачены средства, а в итоге (в сухом остатке!) всего лишь "гибрид", которому ещё надо будет постараться, чтобы найти себе место среди успешно освоенных реакторов на быстрых нейтронах: http://www.termoyadu.net/index.php?topic=6.msg2768#msg2768.

                                                                                              Ф.Х.Ялышев, изобретатель,
                                                                                        выпускник МВТУ им. Н.Э.Баумана, 1971г.
4  Публикации / Новости / Re: 12 января 2007 года исполнилось 100 лет... : 05 Сентябрь 2020, 10:38:43
Китай запустил многоразовый космический корабль

ПЕКИН, 4 сен – РИА Новости. Китай успешно запустил многоразовый испытательный космический корабль, сообщает Китайская корпорация космической науки и техники (CASC).

Запуск состоялся в пятницу с помощью ракеты-носителя "Чанчжэн-2F" ("Великий поход-2F") c космодрома Цзюцюань в автономном районе Внутренняя Монголия.

Сообщается, что корабль некоторое время будет летать по орбите Земли, после чего вернется обратно.

"Аппарат предназначен для тестирования технологий многократного использования во время полетов и предоставления технологической поддержки в мирном освоении космоса", - говорится в сообщении.

https://ria.ru/20200904/kosmos-1576771739.html,
https://www.gazeta.ru/science/2020/09/04_a_13236062.shtml.

P.S. Cекретный китайский шаттл вернулся на Землю
https://www.gazeta.ru/science/2020/09/06_a_13238234.shtml.

P.P.S. Китайский секретный шаттл приземлился в пустыне
https://www.gazeta.ru/science/2020/09/07_a_13240142.shtml.

P.P.P.S. Американский спутник снял секретный китайский шаттл после посадки
https://www.gazeta.ru/science/2020/09/10_a_13246394.shtml.

Другие новости...
- Chandrayaan 2 провел год на орбите Луны
https://kosmolenta.com/index.php/1641-2020-09-07-chandrayaan2.
-- Предыстория здесь: http://www.termoyadu.net/index.php?topic=13.msg3373#msg3373.
- Китайский марсианский зонд преодолел 155 млн километров
http://russian.news.cn/2020-09/19/c_139380855.htm.
- NASA представило новый план полетов на Луну (высадка таки в 2024 году!)
https://www.gazeta.ru/science/news/2020/09/22/n_14973697.shtml.
- Чанъэ-5 - Луна-24 доставка грунта с поверхности Луны 44 года спустя (запуск уже 24 ноября!)
https://zen.yandex.ru/media/eclipsechasers/chane5-luna24-dostavka-grunta-s-poverhnosti-luny-44-goda-spustia-5f69a1444523ae2f8fe3987f, https://mirkosmosa.ru/news/zapusk-apparata-chane-5-k-lune-planiruetsya-osuschestvit-do-konca-2020-goda, http://russian.news.cn/2020-09/19/c_139381507.htm.
- Китайские ученые рассчитали уровень излучения, которому подвергнутся люди на поверхности Луны. Результаты исследования опубликованы в журнале Science Advances.
Уровень излучения на Луне оказался в 200 раз выше, чем на Земле, в 5-10 раз выше, чем на борту самолета, летящего из Нью-Йорка во Франкфурт, и в 2,6 раза выше, чем на борту Международной космической станции (МКС): https://www.gazeta.ru/science/news/2020/09/26/n_14992297.shtml.

Другие значимые запуски осени 2020 года...
- Корабль «Союз МС-17» установил рекорд скорости полета к МКС
https://www.interfax.ru/russia/731427, https://ria.ru/20201014/rekord-1579729882.html,
https://kosmolenta.com/index.php/1655-2020-10-14-soyuz-ms17.
- Запуск корабля Crew Dragon с четырьмя астронавтами к МКС отложили до середины ноября
https://www.newsru.com/hitech/12oct2020/crew_dragon_nov.html.
5  Обсуждение / Проект ИТЭР/ITER / Re: Предмет обсуждения : 13 Август 2020, 14:28:18
Надежность деталей международного реактора ITER проверят ученые из Томска

МОСКВА, 11 авг — РИА Новости. Специалисты Томского политехнического университета (ТПУ) разработают программы для неразрушающего контроля сварных соединений в термоядерном реакторе ИТЭР (ITER), признанного самым масштабным международным проектом в области энергетики, сообщила пресс-службе вуза.

ИТЭР (International Thermonuclear Experimental Reactor) — проект международного экспериментального термоядерного реактора, сборка которого началась в конце июля на юге Франции. Цель проекта — продемонстрировать на практике возможность выработки энергии с помощью управляемого термоядерного синтеза. Новый источник энергии будет более экологичным и безопасным, чем углеводороды и уран.

Над созданием ИТЭР работают специалисты из России, Евросоюза, США, Китая, Индии, Японии и Южной Кореи. Россия разрабатывает и поставляет оборудование для основных систем ИТЭР.

Ряд устройств для диагностики параметров плазмы в реакторе выполняет Институт ядерной физики им. Г.И. Будкера Сибирского отделения РАН (ИЯФ СО РАН). Детали этих устройств имеют сварные соединения, и чтобы использовать их в условиях реактора, качество и надежность швов, по словам ученых, должно быть проверено с высочайшей точностью.

Специалисты ТПУ будут разрабатывать методики для их контроля.

"ИТЭР — это ядерный объект, здесь предъявляются серьезнейшие требования к качеству и безопасности всех используемых систем. В частности, необходим стопроцентный контроль всех сварных швов на деталях. ТПУ как раз решает такую важную научно-техническую задачу — контроль швов с помощью ультразвука", — рассказал РИА Новости советник дирекции ИЯФ СО РАН, заведующий лабораторией ИЯФ СО РАН Александр Бурдаков.

Сами устройства и детали, которые предстоит проверить с помощью методик томских ученых, отличаются крупными габаритами. Это делает крайне неудобным другие методы неразрушающего контроля, например, с помощью рентгеновского излучения, сообщили исследователи.

Возможности ультразвука позволяют работать с крупными объектами. Ультразвуковые волны проходят сквозь объект и взаимодействуют с его внутренней структурой, данные взаимодействия отражаются на обратной волне. По ним специалисты могут судить о наличии в шве скрытых дефектов и их характеристиках.

Это будет уже второй проект для ИТЭР, в котором участвуют специалисты ТПУ. Ранее мы создали ультразвуковой томограф для контроля деталей первой стенки реактора, он не имеет аналогов ни в России, ни в мире. Сейчас он находится в стадии опытной эксплуатации на площадке заказчика — в НИИ электрофизической аппаратуры им. Д.В. Ефремова", — сообщил директор Инженерной школы неразрушающего контроля ТПУ Дмитрий Седнев.

Предыдущий проект продемонстрировал международным экспертам, что приборы и методы для контроля, которые предлагает Томский политех, применимы для ИТЭР и обеспечивают необходимый уровень контроля качества, считает Дмитрий Седнев.

"В первую очередь, мы должны предложить ИЯФ СО РАН методику, как контролировать сварные соединения разрабатываемых устройств, чтобы сами устройства можно было безопасно эксплуатировать", — рассказал он РИА Новости.

ТПУ должен представить заказчику свои методики и программы для ультразвукового контроля в ноябре 2020 года.

https://ria.ru/20200811/1575589915.html.

Предыстория здесь: http://atominfo.ru/newss/z0933.htm.

P.S. В понедельник, 17 августа, на пресс-конференции в ТАСС глава российского Агентства ИТЭР Анатолий Красильников заявил:
- Создание реактора ИТЭР даст старт развитию термоядерной промышленности
http://atominfo.ru/newsz02/a0069.htm.
- Задержки в создании ИТЭР из-за пандемии планируется преодолеть к концу года
http://atominfo.ru/newsz02/a0072.htm.

P.P.S. Ядерный синтез: физик ETH призывает к выходу из ИТЭР
http://lenr.seplm.ru/articles/yadernyi-sintez-fizik-eth-prizyvaet-k-vykhodu-iz-iter,
https://www.infosperber.ch/Artikel/Umwelt/Kernfusion-ETH-Physiker-fordert-den-ITER-Ausstieg.

P.P.P.S. А вот эксперт Валентин Гибалов, напротив, предлагает напрячься и ожидать чуда...
Как люди пытаются освоить термоядерный синтез и почему проект ИТЭР играет в этом ключевую роль: https://nplus1.ru/material/2020/09/07/iter-rosatom.
Правда, года четыре тому назад он был менее оптимистичен в отношении термоядерного синтеза в целом и в отношении проекта ИТЭР в частности. Но, как говорят, всё течёт и всё меняется:
Пятна «искусственного солнца»
https://izborskiy-club.livejournal.com/596736.html.

Другие новости со сборочной площадки ИТЭР...
- В магнитной установке реактора ИТЭР установлено более километра российских шинопроводов  
https://news.rambler.ru/other/44845314-v-magnitnoy-ustanovke-reaktora-iter-ustanovleno-bolee-kilometra-rossiyskih-shinoprovodov/, http://energo-news.ru/archives/159014.
6  Обсуждение / Управляемый термоядерный синтез / Re: Предмет обсуждения : 08 Август 2020, 20:20:12
«Искусственное Солнце». Как Китай создает свои термоядерные реакторы

Опубликовано 2020/07/30

28 июля во французской деревушке Сен-Поль-ле-Дюранс началось строительство (сборка!) первого в мире экспериментального термоядерного реактора «Токамак» на базе международного проекта ИТЭР (International Thermonuclear Experimental Reactor, ITER). В проекте принимают участие страны ЕС, Россия, США, Япония, Южная Корея, Индия и Китай. При этом, Китай развивает собственную программу и строит долгосрочные планы на термоядерную энергетику.

Энергетика будущего

Отличие «Токамака» от обычных ядерных реакторов на действующих АЭС в том, что термоядерный реактор основан на ядерном синтезе, а не на распаде атомов. Физические процессы, создаваемые внутри «Токамака», аналогичны термоядерным реакциям, происходящим на Солнце.

Конструкция реактора представляет собой гигантскую катушку с пространством вакуума посередине. При подключении к электроэнергии внутри реактора образуется огромное магнитное поле, которое сталкивает ядра атомов друг с другом, что ведет к появлению плазмы и выделению большого количества тепловой энергии. Предполагается, что первая плазма будет получена на «Токамаке» к 2025 году. Мощность реактора будет составлять 500 МВт при том, что потребление самой плазмы не превышает 50 МВт.

Термоядерная энергетика — это энергетика будущего. Она имеет ряд безусловных преимуществ перед современными атомными станциями. Во-первых, за счет термоядерного синтеза выделяется в разы больше энергии на единицу массы ядерного вещества, чем в реакциях деления.

Во-вторых, термоядерные реакторы гораздо безопаснее, чем традиционные. Они не могут взорваться, повреждение реактора не приведет к его расплаву, так как в земных условиях термоядерная реакция должна поддерживаться сильным магнитным полем. Термоядерные АЭС, как и обычные атомные станции, обладают минимальными выбросами в атмосферу.

В Поднебесной будет свое «Солнце»

Китай наравне с другими странами-участницами проекта ИТЭР активно помогает создавать первый термоядерный реактор. На долю китайских подрядчиков приходится около 9% всех работ по проекту. Прежде всего, это поставка энергооборудования: высоковольтных подстанций, трансформаторов, систем постоянного и переменного тока.

При этом, Китай также реализует собственную программу по разработке термоядерного реактора. В 2018 году в городе Хэфэй, провинции Аньхой запустили экспериментальный реактор EAST (Experimental Advanced Superconducting Tokamak), созданный на базе советских разработок. Ученым из Аньхоя удалось удержать плазму при температуре 100 млн градусов Цельсия на целых 100 секунд. Пока что это мировой рекорд.

После успешного запуска экспериментального реактора EAST ученые из Юго-западного института физики совместно с Китайской национальной ядерной корпорацией (CNNC) построят еще один экспериментальный реактор HL-2M в Чэнду, провинции Сычуань, который позволит поддерживать термоядерную реакцию бесконечное количество времени и начать вырабатывать электроэнергию. Изначально планировалось достроить HL-2M в 2020 году, однако из-за пандемии коронавируса сроки могут быть сдвинуты.

Термоядерная гонка

Несмотря на то, что церемония начала сборки реактора ИТЭР была исключительно дружественная и создавала атмосферу взаимовыгодного сотрудничества, на деле ситуация в скором времени может измениться. Если в ближайший год Китай действительно сам запустит полностью функциональный образец термоядерного реактора, то окажется на шаг впереди всего остального международного сообщества. Следующий этап — создание и запуск первой в мире промышленной термоядерной станции.

В настоящее время китайский промышленный реактор термоядерного синтеза (China Fusion Engineering Testing Reactor, CFETR) находится на стадии проектирования. Он будет уступать по мощности международной версии промышленного реактора DEMO, однако по срокам может быть построен гораздо раньше. Такой вариант развития событий вполне вероятен, ведь китайские ученые за 10 лет работы в проекте ИТЭР уже наверняка получили все необходимые компетенции. Возможность достаточного финансирования проекта со стороны китайского правительства и государственных корпораций также не вызывает сомнений, учитывая стратегическую важность проекта.

Слаженная работа под централизованным госуправлением внутри Китая может оказаться куда более эффективной и плодотворной, чем громоздкая система международного проекта, обремененная европейской бюрократией и межнациональными конфликтами интересов. Если Китай овладеет технологией термоядерного синтеза быстрее, чем другие страны, он больше не будет мировым импортером энергоносителей. Китайская экономика сможет самостоятельно удовлетворять огромные потребности в электроэнергии, что откроет для нее еще большие перспективы развития. Термоядерная энергия станет мощным геополитическим инструментом, который позволит Китаю занять более прочные позиции при переформатировании сложившегося энергетического ландшафта.

Денис Калинин/China Compass

Источник: http://ekd.me/2020/07/iskusstvennoe-solnce-kak-kitaj-sozdaet-svoi-termoyadernye-reaktory/.

P.S. Ключевая фраза  всей этой песни о китайском термояде - "сроки могут быть сдвинуты"! Подобные дифирамбы в адрес термояда звучали и из уст наших термоядерщиков в течении почти 70 лет. Теперь же хвалебные оды приутихли, и целью отечественных сторонников термоядерной энергетики остался лишь гибридный термояд: http://www.termoyadu.net/index.php?topic=6.msg3424#msg3424, http://atominfo.ru/newsz01/a0012.htm.
Без всяких сомнений к такому же выводу придут и китайские товарищи, правда. не по истечении 70 лет, а очень даже скоро! "Чистый" термояд из-за недопустимой нейтронизации (ионизации!) конструкций реактора не позволяет не то что получать энергию в промышленных масштабах, но даже достичь точку безубыточности. Вон, достичь точку безубыточности токамак JET готовится аж с мая 2014 года, но "воз и ныне там": http://www.termoyadu.net/index.php?topic=7.msg2704#msg2704.

P.P.S. Такая медлительность (осторожность!) вполне себе объяснима. Достичь точку безубыточности в токамаках можно только работая на дейтерий-тритиевой смеси. Но такой режим работы, как было сказано выше, однозначно приводит к недопустимой нейтронизации (ионизации!) элементов конструкции реактора и быстрому выходу его из строя. Именно при попытке достичь точку безубыточности, работая на D-T смеси, вышел из строя и позже был утилизирован американский (принстонский) токамак TFTR: https://ru.qwe.wiki/wiki/Tokamak_Fusion_Test_Reactor.

                                                                                                 Ф.Х.Ялышев, изобретатель,
                                                                                        выпускник МВТУ им. Н.Э.Баумана, 1971г.                                                                                                  
7  Обсуждение / Управляемый термоядерный синтез / Re: холодный ядерный синтез расулов а.в. : 04 Август 2020, 20:28:43
Вновь напомнил о себе изобретатель А.Росси...
Информация от Андреа Росси!

31 июля 2020 года в 12: 49

Только что закончил свою сегодняшнюю работу, начатую сегодня рано утром в 5.30 утра.

Работа сегодняшнего дня была важна, но важно также и это введение в информацию: тест сегодняшнего дня был важен, потому что я использовал революционную конфигурацию ECAT SKL, но прежде всего я хочу сделать эту оговорку: тест сегодняшнего дня был сделан мной одним, никто другой не присутствовал, даже по скайпу, поэтому эти данные должны быть прочитаны с запасом ( по-итальянски мы говорим ” CON BENEFICIO D’INVENTARIO” ).

В сентябре, если позволит Covid 19, у нас будет важная третья сторона, назначенная партнером, который будет контролировать измерения, переделывая их.

Поэтому сейчас вы просто принимаете мое слово, правильное или неправильное, хотя я думаю, что я прав.

Новый Ecat SKL - это шедевр моей жизни. Он работает в замкнутом контуре и вырабатывает электрическую энергию для самого топлива, плюс вырабатывает 4 кВтч/ч электрической энергии. Я потреблял только 130 Втч / ч для отвода тепловой энергии, которая излучается от Ecat ( в общей сложности излучается около 1 кВт * ч тепловой энергии).

Объем реактора Ecat составляет в общей сложности 100 кубических см, в то время как весь он содержится в коробке рассеивателя тепла, размеры которой составляют 20 х 20 х 20 см, плюс мы имеем снаружи нее блок управления, который чрезвычайно сложен и не рассеивает тепло благодаря пассивным системам охлаждения, которые очень эффективны.

Нужно еще поработать, но теперь на пару недель я возьму отпуск, потому что очень устал.

Сделан большой шаг вперед. По-видимому, у нас должен быть электрический двигатель с бесконечной автономией. Посмотрим.

С Теплыми Пожеланиями,
A.R.

http://lenr.seplm.ru/novosti/informatsiya-ot-andrea-rossi.

P.S. Как и обещал, в сентябре...
- Андреа Росси: началось стороннее тестирование E-Cat SKL
http://lenr.seplm.ru/novosti/andrea-rossi-nachalos-storonnee-testirovanie-e-cat-skl,
https://e-catworld.com/2020/09/11/rossi-third-party-testing-of-the-e-cat-skl-has-started/.
-- Ещё не началось...
Андреа Росси: тестеры E-Cat SKL все еще находятся в его лаборатории
http://lenr.seplm.ru/novosti/andrea-rossi-testery-e-cat-skl-vse-eshche-nakhodyatsya-v-ego-laboratorii,
https://e-catworld.com/2020/09/15/rossi-e-cat-skl-testers-still-in-his-lab/.
--- E-CAT SKL Первый Тест Третьей Стороны Прошел Успешно
http://lenr.seplm.ru/novosti/pervyi-test-tretei-storony-proshel-uspeshno-sertifikatsionnoe-agentstvo-zaplanirovalo-testirovanie, https://e-catworld.com/2020/09/24/first-third-party-test-successful-certifying-agency-testing-scheduled/.

В дополнение...
Обнадеживающие перспективы нового типа неисчерпаемой энергии
Виталий Узиков, ведущий инженер-технолог ГНЦ НИИАР
http://www.proatom.ru/modules.php?name=News&file=article&sid=9295.
8  Публикации / Новости / Re: 12 января 2007 года исполнилось 100 лет... : 03 Август 2020, 07:57:46
Корабль Crew Dragon вернулся на Землю

ВАШИНГТОН, 2 авг — РИА Новости. Космический корабль Crew Dragon приводнился в Атлантическом океане у побережья Флориды, завершив первый пилотируемый полет на Международную космическую станцию.

Он коснулся воды в расчетные 21:48 по московскому времени.

Ранее в район приводнения уже направился спасательный корабль Go Navigator. Астронавты смогут покинуть капсулу после того, как специалисты осмотрят ее и поднимут на борт.

Пока они остаются внутри. Выход экипажа задержали из-за повышенного содержания тетраоксида диазота на поверхности капсулы.

"В большом объеме он может быть токсичным, поэтому из осторожности ждем снижения показателей", — сообщил ведущий трансляции НАСА.

Затем Даг Херли и Боб Бенкен, вернувшиеся с МКС, пройдут медицинский осмотр. Астронавтов доставят сначала на военную базу на побережье Флориды, а затем перевезут в Хьюстон. Члены экипажа уже рассказали, что чувствуют себя хорошо. Президент США Дональд Трамп поздравил их с возвращением на Землю.

Созданный компанией SpaceX космический корабль отправился к МКС в конце мая, астронавты провели на орбите два месяца. После испытательных беспилотного и пилотируемого полетов НАСА сертифицирует Crew Dragon для штатных миссий, первая из которых запланирована на сентябрь.

Crew Dragon стал первым частным пилотируемым космическим кораблем. Теперь США смогут вернуть себе возможность самостоятельно проводить пилотируемые полеты в космос: на протяжении последних девяти лет американцев на МКС за плату доставляли корабли "Союз". Руководитель пресс-службы "Роскосмоса" Владимир Устименко ранее отмечал, что российские космонавты в будущем в рамках взаимодействия с НАСА могут начать летать на американских кораблях Crew Dragon и Starliner, а американские астронавты продолжат по обмену добираться к МКС на российских кораблях.

https://ria.ru/20200802/1575282781.html,
https://www.gazeta.ru/science/2020/08/03_a_13175695.shtml.

Другие новости...
- Снова о достоверности высадки американцев на Луну
https://ria.ru/20200810/1575580007.html.
- В NASA назвали сроки первого контрактного запуска Crew Dragon: не раньше 23 октября
https://www.gazeta.ru/science/news/2020/08/14/n_14800915.shtml,
https://kosmolenta.com/index.php/1632-2020-08-17-two-news.
-- Запуск же ближайшего корабля «Союз» к МКС планируется 14 октября
https://www.gazeta.ru/science/news/2020/08/16/n_14805319.shtml.
- Снова о реально работающем китайском луноходе
http://russian.news.cn/2020-08/14/c_139290987.htm.
-- А вот запуск японского лунного модуля Hakuto-R отложили на 2022 год
https://nplus1.ru/news/2020/08/17/japan-ispace-moon-lander-hakuto-r-2022.
--- И ещё японцы:
ТОКИО, 20 авг - РИА Новости. Очередной японский космический грузовик "Конотори-9" завершил свою работу по доставке продовольствия и оборудования космонавтам МКС и сгорел в плотных слоях земной атмосферы, сообщило аэрокосмическое агентство Японии (JAXA).
В среду цилиндрический аппарат "Конотори-9", запущенный 21 мая, забрал с МКС мусор и, отделившись от станции, прекратил свое существование.
Грузовики этой серии грузоподъемностью 6 тонн снабжают МКС всем необходимым с 2009 года.
Запуск нового грузовика HTV-X, который разрабатывает JAXA, намечен на 2021 год.
https://ria.ru/20200820/1576036162.html.
9  Обсуждение / Проект ИТЭР/ITER / Re: Предмет обсуждения : 01 Август 2020, 13:17:05
Вместо послесловия...
Во Франции официально началась сборка экспериментального термоядерного реактора ITER

Состоялась официальная церемония начала сборки экспериментального термоядерного реактора ITER, в которой приняли участие президент Франции Эммануэль Макрон и главы правительств стран-партнеров ITER. Ожидается, что первая плазма в ITER будет получена в декабре 2025 года, а в 2035 году начнутся эксперименты с дейтерий-тритиевой плазмой. Трансляция церемонии велась на Youtube.

Проект международного экспериментального термоядерного реактора ITER стартовал в 1992 году, в настоящий момент в нем участвуют Китай, Европейский Союз, Индия, Япония, Российская Федерация, Южная Корея, Казахстан и США. Его главная цель заключается в демонстрации возможности коммерческого использования энергетического реактора, в котором идут реакции синтеза более тяжелых элементов из более легких, и решении целого ряда физических и технологических проблем, которые возникают при создании подобной электростанции.

Сам реактор представляет собой магнитную ловушку типа токамак, в которой шнур из разогретой до нескольких сотен миллионов кельвинов дейтерий-тритиевой плазмы, находящийся внутри вакуумной камеры, удерживается от разлета и касания стенок магнитным полем определенной конфигурации, создаваемой системой сверхпроводящих катушек. Перед началом работы вакуумная камера откачивается системой насосов, после чего в нее напускается рабочая смесь газов. Затем при помощи индуктора создается пробой газовой смеси и зажигается разряд, после чего начинается повышение температуры плазмы (увеличение энергии ионов и электронов) при помощи целого ряда методов.

В ходе реакции ядра дейтерия и трития сливаются вместе с образованием альфа-частицы и нейтрона, при этом выделяется 17,6 мегаэлектронвольт энергии, которая распределяется между продуктами реакции. Альфа-частицы, постепенно диффундируя из центра плазменного шнура на его периферию, в конечном итоге попадают в область дивертора, откуда удаляются из плазмы. Нейтроны же попадают в бланкет, где замедляются, нагревая теплоноситель (воду) или участвуют в наработке трития из лития. Вся вакуумная камера вместе с магнитными катушками, индуктором, системами откачки, подачи топлива, нагрева плазмы и диагностики ее параметров заключены в криостат, который играет роль опорной конструкции и своеобразного вакуумного термоса. Криостат, в свою очередь, окружен бетонной биозащитой, толщиной несколько метров, для обеспечения радиационной безопасности.

ITER считается одной из сложнейших физических установок, которые когда-либо создавались человеком, общая масса реактора оценивается в 23 тысячи тонн, а сам он занимает огромное здание. Строительство началось в 2007 году в исследовательском центре Кадараш на юге Франции, а в конце мая 2020 года в завершенную шахту реактора начали устанавливать основание криостата, общей массой 1250 тонн, что можно считать отправной точкой процесса создания самого реактора. Однако лишь 28 июля 2020 года президент Франции Эммануэль Макрон, главы правительств стран-партнеров ITER, а также ряд участников проекта провели официальную церемонию начала сборки реактора.

Ожидается, что завершение работ и получение первой плазмы в ITER состоится в декабре 2025 года. При этом лишь в 2035 году начнутся эксперименты с дейтерий-тритиевой плазмой, в ходе которых реактор должен будет удерживать высокотемпературную плазму в течение 400 секунд и выйти на тепловую мощность 500 мегаватт.

Разработка термоядерных реакторов ведется не только на международном уровне — целый ряд частных компаний пытается достичь успеха в этом. Подробнее об этом можно узнать из нашего блога и материала.

Александр Войтюк

https://nplus1.ru/news/2020/07/28/machine-assembly-iter-start,
https://hi-tech.mail.ru/review/termoyadernyj_reaktor/.

P.S. Повторюсь. В настоящее время, по умолчанию, ИТЭР уже рассматривается не как источник энергии, а лишь как демонстратор "осуществимости синтеза в качестве будущего источника энергии»: http://lenr.seplm.ru/novosti/vozdushnyi-puzyr-itera-sdulsya-statya-ot-29-maya-2020-g-stivena-b-krivita-evropeiskaya-komissiya-ispravlyaet-lozhnye-pretenzii-iter, http://news.newenergytimes.net/2020/05/29/european-commission-corrects-misleading-iter-power-claims/. Ну, а если и это не получится, то ИТЭР превратится всего лишь в демонстратор гигантизма, как в своё время Царь-Пушка и Царь-Колокол. Будет Царь-Токамак!
И ещё. Проект ИТЭР обойдется налогоплательщикам из 35 стран мира в 45 миллиардов долларов: http://lenr.seplm.ru/articles/proekt-iter-oboidetsya-nalogoplatelshchikam-iz-35-stran-mira-v-45-milliardov-dollarov, http://news.newenergytimes.net/2020/07/23/false-fusion-claims-by-iter-european-domestic-agency/.

                                                                                                                                                 Ф.Ялышев
10  Обсуждение / Проект ИТЭР/ITER / Re: Предмет обсуждения : 28 Июль 2020, 18:30:41
Во Франции начали сборку термоядерного реактора ИТЭР

В строительстве объекта участвуют страны ЕС, РФ, США, Китай, Южная Корея, Япония, Индия.

Во Франции начали сборку международного экспериментального термоядерного реактора ИТЭР. Об этом в исследовательском центре Кадараш на торжественной церемонии, приуроченной к началу работ, заявил генеральный директор проекта Бернар Биго. В мероприятии принимают участие президент Эмманюэль Макрон и генеральный директор "Росатома" Алексей Лихачев.

Франция получила ключевые компоненты для сборки ИТЭР. Параллельно ведутся инженерные и конструкторские работы. Другие составляющие комплекса будут доставлены на площадку в течение следующих двух лет. Известно, что строительство ведется на территории коммуны Сен-Поль-ле-Дюранс.

Напомним, что в строительстве задействованы страны Евросоюза, Россия, США, Индия, Китай, Южная Корея и Япония. Участники отвечают за производство и доставку определенных систем согласно заключенным обязательствам. Они обеспечивают 9-процентный вклад в стоимость проекта. Работы по строительству реактора будут завершены в 2025 году. Тогда же ученые смогут получить первую плазму, которая подтвердит эффективность термоядерных реакторов на практике.

https://piter.tv/event/Vo_Francii_nachali_sborku_termoyadernogo_reaktora_ITER/,
https://rg.ru/2020/07/28/vo-francii-nachali-sobirat-pervyj-termoiadernyj-reaktor.html.

В дополнение...
- МОСКВА, 28 июл - РИА Новости. Проект строительства международного экспериментального термоядерного реактора ИТЭР является ярким примером эффективного и взаимовыгодного многостороннего сотрудничества, отметил президент России Владимир Путин в своем приветствии участникам прошедшей во Франции церемонии по случаю начала работ по сборке и монтажу оборудования реактора: https://ria.ru/20200728/1575042673.html.

P.S. Не только хвалебные оды, но и критика:
- Одна из первых: http://www.termoyadu.net/index.php?topic=684.msg2311#msg2311.
- Некоторые из последних: http://www.termoyadu.net/index.php?topic=6.msg3469#msg3469,
https://7x7-journal.ru/posts/2020/07/31/chto-nuzhno-znat-pro-termoyadernyj-reaktor-iter,
https://pikabu.ru/story/kosmicheskoe_vranyo_pochemu_termoyadernyiy_reaktor_ne_mogut_postroit_uzhe_50_let_7617255?cid=175904733.
11  Обсуждение / Управляемый термоядерный синтез / Re: Предмет обсуждения : 27 Июль 2020, 20:38:11
Пинок по токамак-ИТЭРу и токамакам вообще. Китайский - не исключение!
Еще раз об управляемом термоядерном синтезе

ИА REGNUM продолжает публикацию цикла статей Джонотана Теннебаума, посвященных новой технологии получения реакций ядерного синтеза, способной, по его мнению, стать реальной экономически эффективной и экологически чистой заменой не только существующим атомным электростанциям, но и строящемуся экспериментальному термоядерному реактору ITER.

Третья статья цикла, опубликованной в Asia Times 18 июля 2020 года, называется «Более дешевый и быстрый способ получения ядерного синтеза».

Технология плотной фокусировки плазмы (ПФП) может обеспечить более простой, безопасный и экономически эффективный способ получения ядерной энергии.

Одна из наиболее привлекательных сторон подхода Эрика Лернера к ядерному синтезу с использованием ПФП заключается в возможности использования в качестве топлива бора и водорода. Это свойство позволяет использовать водородно-борный лазерный термоядерный реактор, о котором я писал в предыдущей статье (см. «Простой путь к ядерному синтезу»).

Кроме того, при реакции синтеза ядрами водорода образуются не нейтроны, а только заряженные альфа-частицы. Это дает ПФП огромные потенциальные преимущества по сравнению с известными технологиями термоядерного синтеза, которые используют в качестве топлива смеси изотопов водорода дейтерия (D) и трития (T).

Сегодня исследователи пытаются получить энергию не только с помощью лазерного ядерного синтеза, но, например, и на Международном экспериментальном реакторе Torus (ITER) стоимостью $40 млрд, который является прототипом будущей термоядерной электростанции.

С точки зрения требуемых физических условий, реакция водород-бор находится в пределах потенциальной досягаемости ПФП, но далеко за пределами проектной способности существующих систем. Реакции ядерного синтеза требуют рабочих температур как минимум в десять раз выше достигнутых сегодня. В результате, используется гораздо более «лёгкая» реакция дейтерия и трития.

К сожалению, DT-реакции выделяют около 80% своей энергии в виде нейтронов высокой энергии.

Это приводит к целому ряду проблем. Будучи электрически нейтральными частицами, нейтроны легко проникают в атомные ядра окружающих материалов, делая часть из них радиоактивными. Кроме того, интенсивный поток генерируемых нейтронов может серьезно повредить открытые части реактора.

Проблема, связанная с индуцированной радиоактивностью материалов реактора, незначительна по сравнению с проблемой радиоактивных отходов; тем не менее, термоядерные электростанции на основе DT — топлива потребуют систем для обработки, переработки и, что наиболее вероятно, среднесрочного хранения «радиоактивных» материалов. Радиоактивность, вызванная нейтронами, приводит к дополнительным затратам и сложностям при строительстве, обслуживании и эксплуатации термоядерной электростанции.

Возможно, еще более значительным является преимущество ПФП при преобразовании энергии, получаемой в результате реакций синтеза, в экономически выгодные формы, прежде всего, в электричество. В настоящее время не существует известного практического способа преобразования энергии интенсивного нейтронного излучения непосредственно в электричество.

Поскольку большая часть результатов термоядерного синтеза представлена в виде нейтронов, реакторы с DT-топливом должны использовать тепло, выделяемое при поглощении нейтронов в материале, окружающем «камеру горения». Затем тепло должно передаваться в системы охлаждения и теплообменники и, наконец, использоваться для питания турбогенераторов.

Эта устаревшая схема выработки тепловой энергии значительно увеличивает объем и стоимость будущей термоядерной электростанции...

https://news.rambler.ru/other/44568595-esche-raz-ob-upravlyaemom-termoyadernom-sinteze/,
https://regnum.ru/news/3020067.
12  Публикации / Новости / Re: 60 лет первому в СССР действующему реактору : 26 Июль 2020, 20:20:22
Уверенная поступь БН-800...
Изготовлена первая полная перегрузка МОКС-топлива для реактора БН-800

ОПУБЛИКОВАНО 24.07.2020

На Горно-химическом комбинате (ФГУП «ГХК»; Железногорск, Красноярский край) изготовлена и прошла приемку первая полная перегрузка уран-плутониевого МОКС-топлива для реактора на быстрых нейтронах БН-800 Белоярской АЭС в количестве 169 тепловыделяющих сборок (ТВС).

Заказчиком в лице АО «Концерн Росэнергоатом» подписан акт о приемке результатов разработки продукции, уполномоченной организацией АО «ВПО «ЗАЭС» выдано заключение о готовности топлива к отгрузке.

АО «ТВЭЛ» выполнит поставку МОКС-топлива на Белоярскую АЭС в г. Заречный Свердловской области до конца 2020 года. Загрузка топлива в реактор запланирована на январь 2021 года.

Изначально при пуске реактора БН-800 была сформирована гибридная активная зона, укомплектованная урановым топливом производства ПАО «МСЗ» (г. Электросталь, Московская область), частично - опытными МОКС-ТВС, изготовленными в Научно-исследовательском институте атомных реакторов (ГНЦ НИИАР; г. Димитровград, Ульяновская область).

Первая серийная партия МОКС-топлива для БН-800 в количестве 18 ТВС была загружена в реактор в конце 2019 года, оставшаяся часть перегрузки состояла из ТВС с урановым топливом (в январе 2020 года после ремонта энергоблок №4 Белоярской АЭС успешно возобновил работу).

«Начиная с ближайшей перегрузки активная зона БН-800 будет комплектоваться МОКС-ТВС. В то же время АО «ТВЭЛ» и ФГУП «ГХК» продолжают работу по совершенствованию технологии фабрикации МОКС-топлива», - отметил вице-президент по научно-технической деятельности АО «ТВЭЛ» Александр Угрюмов.

Завершение перехода к зоне с полной загрузкой МОКС-топливом запланировано на 2022 год.

http://atominfo.ru/newsz02/a0009.htm.

К слову, аномальная жара не повлияла на безопасную работу Белоярской АЭС. Энергоблок №3 (БН-600) работает в штатном режиме и выдаёт 612 МВт в энергосистему Урала. А на энергоблоке №4 (БН-800) продолжаются плановые мероприятия по перегрузке топлива, техническому обслуживанию и профилактическому ремонту оборудования: http://atominfo.ru/newsz01/a0991.htm.

Другие новости...
- Конференция FR21 по быстрым реакторам и связанным с ними топливным циклам пройдёт в 2021 году в Пекине: http://atominfo.ru/newsz02/a0016.htm.
- МОСКВА, 5 авг - РИА Новости. Минфин России предложил сократить финансирование развития атомной отрасли в 2021-2023 годах примерно на 67,5 миллиарда рублей:
https://ria.ru/20200805/1575380656.html.
- БН-800 выведен на номинальный уровень мощности
http://atominfo.ru/newsz02/a0030.htm.
- Росатом объявил о планах создания в РФ центра исследований лазерного термоядерного синтеза: http://atominfo.ru/newsz02/a0071.htm.
13  Публикации / Новости / Re: Тайны Солнечной системы : 24 Июль 2020, 20:20:51
О спутнике Юпитера Ганимеде...
Juno сфотографировал северный полюс Ганимеда

Опубликовано: 24.07.2020 10:28

Juno («Юнона») – научный спутник НАСА, предназначенный для изучения Юпитера. Он был запущен 5 августа 2011 года и вышел на орбиту крупнейшей планеты в Солнечной системе 5 июля 2016 года. Миссия завершится в 2021 году.

26 декабря 2019 года, во время очередного пролета Юпитера, автоматической станции Juno представилась редкая возможность сделать снимки северного полюса спутника Юпитера Ганимеда. Фотографии были получены при помощи инфракрасного спектрометра JIRAM, основным назначением которого является изучение и картирование полярных сияний на Юпитере.

Ганимед – девятый по размерам объект в Солнечной системе. Его диаметр превышает диаметр планеты Меркурий. Поверхность спутника покрыта толстой корой из водяного льда, а под ней, по мнению ученых, находится океан из жидкой воды. Также Ганимед известен тем, что, в отличие от других спутников, обладает магнитным полем.

На Земле магнитное поле защищает атмосферу планеты от заряженных частиц солнечного ветра. Частицы проникают через поле в районе полюсов, попадая в атмосферу и образуя полярные сияния. Но Ганимед не обладает собственной атмосферой, поэтому его поверхность в районе полюсов бомбардируется плазмой солнечного ветра.

Как показали данные, собранные Juno, структура льда в полярной области Ганимеда очень необычна. В инфракрасном диапазоне лед в районе северного полюса Ганимеда имеет спектр поглощения, отличный от спектра льда в экваториальной области. Постоянная бомбардировка льда заряженными частицами препятствует образованию кристаллической структуры, в результате чего в замороженные молекулы воды образуют аморфную массу.

https://kosmolenta.com/index.php/1622-2020-07-24-ganymede,
https://ria.ru/20200724/1574851709.html.

Другие новости...
Ученые выяснили, почему Юпитер не превратился в звезду
https://ria.ru/20200211/1564549558.html?in=t.
14  Публикации / Новости / Re: 12 января 2007 года исполнилось 100 лет... : 23 Июль 2020, 11:07:22
Китайская космическая экспансия продолжается...
Китай запустил свою первую межпланетную станцию к Марсу

Москва. 23 июля. INTERFAX.RU - Тяжелая ракета-носитель "Чанчжэн-5" (CZ-5) в четверг стартовала с первой китайской миссией по исследованию Марса "Тяньвэнь-1", сообщил телеканал CCTV.

Запуск ракеты с автоматической межпланетной станцией (АМС) "Тяньвэнь-1" общей массой около 5 тонн, которая состоит из орбитального аппарата и посадочной платформы с марсоходом, был осуществлен в 07:45 мск со стартовой площадки LC101 китайского космодрома Вэньчан, расположенного на острове Хайнань.

Цель китайской миссии состоит в том, чтобы найти следы жизни на Марсе, а также изучить возможности для его потенциальной колонизации человеком.

Станция должна достичь Красной планеты через семь месяцев - 11 февраля 2021 года. В это время она начнет выполнять тормозной маневр и выйдет на орбиту Марса.

Примерно в течение двух месяцев станция будет проводить детальную съемку поверхности Красной планеты для выбора наиболее подходящего места посадки. Планируется, что 11 апреля 2021 года посадочная платформа с легким 240-килограммовым марсоходом отделится от орбитального аппарата и совершит посадку на поверхность планеты. Предварительным местом посадки выбран район южной части равнины Утопия в восточной части северного полушария Марса.

Запланированный срок работы марсохода составляет 90 марсианских суток (солов), которые на 2,7% больше земных. Его электропитание будут обеспечивать четыре панели солнечных батарей. Скорость передвижения китайского ровера достигает 200 метров в час.

Китайский марсоход оснащен мультиспектральными камерами для навигации и топографической съемки, радиолокационной станцией подповерхностного зондирования для исследования геологического строения Марса до 10-метровой глубины, прибором для анализа химического состава грунта и поиска биомолекул, а также детекторами магнитного поля и метеостанцией.

Что касается орбитального аппарата, то он оборудован двумя камерами, в том числе высокого разрешения, подповерхностным радаром для зондирования грунта на глубину до 100 метров и инфракрасным спектрометром для определения минералогического состава пород на поверхности планеты. Кроме того, на нем имеется магнитометр, анализатор ионов и нейтральных частиц, а также детектор заряженных частиц для изучения атмосферы и космической среды. Его главной задачей будет построение топографической карты Марса, изучение ионосферы и состава марсианского грунта, а также поиски залежей льда под поверхностью Красной планеты.

Это уже вторая земная миссия к Марсу с начала недели. В понедельник к Красной планете на японской ракете-носителе H-IIA отправился космический аппарат Al Amal ("Надежда") Объединенных Арабских Эмиратов. Орбитальный аппарат предназначен для изучения марсианского климата и нижних слоев атмосферы, где формируется погода Красной планеты, в том числе пылевые бури.

Планируется, что космический аппарат Al Amal достигнет Марса к дате празднования 50-летия образования ОАЭ в 2021 году. Он будет выведен на эллиптическую орбиту высотой 40 тыс. км.

По сообщению NASA, 30 июля к Красной планете также отправится и американский марсоход Perseverance.

https://www.interfax.ru/world/718592.

Другие новости...
- МОСКВА, 23 июл - РИА Новости. Российский грузовой корабль "Прогресс МС-15" пристыковался к Международной космической станции, он стал уже пятым кораблем, который добрался до МКС по сверхкороткой схеме менее чем за четыре часа: https://ria.ru/20200723/1574824814.html.
-- Роскосмос сообщил о проблемах при стыковке грузового корабля с МКС
https://www.gazeta.ru/science/2020/07/24_a_13164637.shtml.
- ВАШИНГТОН, 22 июл – РИА Новости. Первый контрактный рейс космического корабля Crew Dragon с четырьмя членами экипажа на Международную космическую станцию состоится не раньше конца сентября...
"Запуск планируется не раньше конца сентября и последует за успешным возвращением с космической станции астронавтов НАСА Роберта Бенкена и Дугласа Херли и анализом НАСА и SpaceX второго демонстрационного полета", - сообщило НАСА в среду: https://ria.ru/20200722/1574754318.html.
- ВАШИНГТОН, 30 июл - РИА новости. Во Флориде стартовала ракета-носитель Atlas V с исследовательским ровером Perseverance, которому предстоит искать следы жизни на Марсе, прямую трансляцию запуска ведет НАСА.
Ракета-носитель стартовала в 07:50 по времени Восточного побережья США (14:50 мск). Прибытие исследовательского ровера на орбиту запланировано на 18 февраля 2021 года:
https://ria.ru/20200730/1575169196.html, https://nplus1.ru/news/2020/07/30/mars-2020,
https://www.gazeta.ru/science/2020/07/28_a_13168519.shtml.
15  Обсуждение / Солнце и звезды / Re: Предмет обсуждения : 17 Июль 2020, 13:26:57
Станция Solar Orbiter прислала первые снимки Солнца

Солнечный зонд Solar Orbiter прислал на Землю все научные данные, собранные в ходе первого сближения со звездой, состоявшегося в июне 2020 года. Предварительный анализ уже позволил астрономам выявить многочисленные микровспышки на Солнце, которые могут помочь в решении проблемы аномального нагрева короны, сообщается на сайте ESA.

Solar Orbiter был запущен в космос 10 февраля 2020 года. В течение девяти лет он будет исследовать корональные выбросы массы, формирование протуберанцев, определять напряженность магнитного поля в активных областях экваториального пояса Солнца, изучать корону звезды и механизмы ускорения солнечного ветра, а также впервые в истории наблюдать за полярными регионами Солнца и получать их прямые полные изображения. Для выполнения научных задач станция оснащена комплектом из десяти научных приборов, большинство из которых укрыто под многослойным солнцезащитным щитом.

15 июня 2020 года зонд успешно прошел свой первый перигелий, оказавшись на минимальном расстоянии 77 миллионов километров от Солнца. Изображения звезды, полученные инструментом EUI в экстремальном ультрафиолетовом диапазоне волн, позволили ученым выявить многочисленные небольшие вспышки, которые получили неофициальное обозначение «костры» (campfires). Они в несколько миллионов раз менее интенсивные, чем обычные вспышки на Солнце, и наблюдались по всему диску Солнца. Астрономам еще предстоит выяснить механизмы генерации подобных вспышек, однако уже выдвинута гипотеза о том, что «костры» могут играть роль в поставке энергии в корону Солнца, обеспечивая ее аномальный нагрев.

Остальные научные инструменты зонда также получили ценный объем данных о картине магнитного поля во внешних слоях звезды, составе, плотности и температуры потоков плазме в короне Солнца и параметрах солнечного ветра. Ожидается, что следующий раз зонд сблизится с Солнцем на расстоянии 0,5 астрономической единицы в феврале 2021 года, а в 2025-2029 годах получит возможность увидеть полюса Солнца.

Ранее мы рассказывали, как зонд «Паркер» показал движение солнечного ветра и помог понять причины ускорения частиц около Солнца.

Александр Войтюк

https://nplus1.ru/news/2020/07/16/solar-orbiter-first-images.

ИМХО. Повторюсь. Проблема аномального нагрева солнечной короны так и будет оставаться проблемой, пока не придёт осознание, что менее нагретая фотосфера ну никак не может разогреть высокотемпературную корону. "Альфвеновские волны", "косы", а теперь вот и "костры" - жалкие попытки обойти один из главных постулатов термодинамики: от менее нагретого к более нагретому энергия передаваться не может! Альтернатива разным механизмам "разогрева" солнечной короны, предлагаемая на страницах этого форума и на сайте http://jalishev.spb.ru/, - изначально горячая солнечная корона, высокотемпературное состояние которой обусловлено энергией магнитного поля, генерируемого вращающимся ядром Солнца: так называемое солнечное динамо: http://www.termoyadu.net/index.php?topic=33.msg2399#msg2399, http://www.termoyadu.net/index.php?topic=33.msg2784#msg2784, http://jalishev.spb.ru/articles/17.php, http://www.termoyadu.net/index.php?topic=33.msg3181#msg3181.
                                                                                                                                  Ф.Ялышев                                                                                                                                                    

Другие новости...
- МОСКВА, 16 сен — РИА Новости. Эксперты НАСА и американского метеорологического агентства NOAA договорились считать декабрь 2019 года началом нового солнечного цикла. Об этом сообщается на официальном сайте НАСА:  https://ria.ru/20200916/solntse-1577306354.html.
- Шестой пролёт вблизи Солнца: 27 сентября...
Зонд «Паркер» поставил новый рекорд близости к Солнцу
https://nplus1.ru/news/2020/09/29/parker-six-flyby.
Страниц: [1] 2 3 ... 137
Частичная или полная перепечатка материалов сайта Термояду.нет
возможна только с разрешения администрации

© Ялышев Ф.Х. | Powered by SMF 1.1.21 | SMF © 2006, Simple Machines
Rambler's Top100 Рейтинг@Mail.ru