Термояду.нет  
29 Ноябрь 2020, 04:11:36 *
Добро пожаловать, Гость. Пожалуйста, войдите или зарегистрируйтесь.

Войти
Новости: Большинство функций форума доступны только после регистрации
 
   Начало   Помощь Поиск Войти Регистрация  
Страниц: [1] 2 3 ... 10
 1 
 : 26 Ноябрь 2020, 06:41:38 
Автор Avtor - Последний ответ от Avtor
Термояд на Солнце есть. Теоретически. Если знаменитый цикл термоядерных реакций Бете ограничить образованием дейтерия...
Российские физики помогли выяснить особенности рождения энергии Солнца

МОСКВА, 28 авг — РИА Новости. Международный коллектив ученых, в который входят специалисты нескольких российских научных центров, впервые в истории изучения Солнца выяснил, что почти вся энергия нашего светила обусловлена термоядерной реакцией слияния двух ядер водорода, протонов, с образованием дейтерия, результаты исследования опубликованы в журнале Nature.

В соответствии с современными астрофизическими моделями, основным источником энергии Солнца является так называемая протон-протонная цепочка реакций — последовательность термоядерных реакций в звездах, приводящая к превращению водорода в гелий.

Единственным доступным земным наблюдателям способом изучения термоядерных процессов, определяющих энергетику светила, является изучение потоков и энергетических спектров нейтрино, образующихся при их протекании. Нейтрино чрезвычайно слабо взаимодействуют с веществом, поэтому, чтобы зарегистрировать хотя бы несколько взаимодействий в день, требуются огромные детекторы с массой в сотни тонн.

Нынешняя работа была выполнена с помощью детектора "Борексино", установленного в подземной лаборатории Гран Сассо Национального института ядерной физики Италии (INFN). Детектор измерял поток солнечных нейтрино, образованных в термоядерной реакции слияния двух ядер водорода с образованием ядра дейтерия. Впервые доказательство протекания такой реакции на Солнце международный проект "Борексино", в котором участвуют российские физики, получил в 2011 году. Теперь оказалось, что эта реакция образует около 99% всей солнечной энергии.

Проект "Борексино" включает в себя научно-исследовательские институты из Германии, Италии, Польши, России, США, и Франции. С российской стороны в проекте участвуют Национальный исследовательский центр "Курчатовский Институт", Научно-исследовательский институт ядерной физики имени Скобельцына МГУ, Объединенный институт ядерных исследований (Дубна) и Национальный исследовательский ядерный университет "Московский инженерно-физический институт".

http://ria.ru/science/20140828/1021803939.html, http://www.gazeta.ru/science/news/2014/08/29/n_6436205.shtml, http://www.nature.com/nature/journal/v512/n7515/full/nature13702.html.

P.S. О том же на Элементах...
http://elementy.ru/news?newsid=432311

Впервые зафиксированы нейтрино вторичного термоядерного цикла Солнца

МОСКВА, 25 ноя — РИА Новости. Ученые из международной коллаборации Borexino объявили о первом наблюдении нейтрино из реакций углеродно-азотного цикла в Солнце. Это экспериментально подтверждает теоретические представления о вторичном цикле термоядерного синтеза в массивных звездах. Результаты исследования опубликованы в журнале Nature.

Звезды питаются энергией термоядерных реакций превращения водорода в гелий, происходящих в их недрах. Такой синтез возможен двумя путями: в протон-протонной (pp) цепи, включающей только изотопы водорода и гелия, и в ходе вторичного цикла, который еще называют углеродно-азотным, или CNO-циклом по символам углерода, азота и кислорода — элементов, выступающих катализаторами реакций. Ядерные реакции как первичного, так и вторичного цикла сопровождается испусканием характерных нейтрино.

Протон-протонные цепи производят около 99 процентов энергии Солнца и сходных с ним по размерам звезд, поэтому ранее ученым удавалось наблюдать только нейтрино из рр-цикла. Но считается, что у тяжелых звезд, с массой в полтора раза и более массивнее Солнца, преобладает углеродно-азотный цикл, и важно было экспериментально доказать его существование.

Из-за чрезвычайно малой вероятности взаимодействия с обычным веществом нейтрино легко проходят сквозь толщу Солнца, сохраняя информацию о ядерных процессах в глубинах звезды и условиях их протекания. Зафиксировать среди солнечных нейтрино те, которые относятся к вторичному циклу было очень сложной задачей, так как их сигнал не намного превышал фоновый. Но ученым коллаборации Borexino это удалось.

"До недавнего времени оставался открытым вопрос, удастся ли зарегистрировать нейтрино из CNO-цикла. Регистрацию CNO-нейтрино, помимо малости самого потока, осложняет присутствие спектральной компоненты природного фона, неотличимой от их спектра", — приводятся в пресс-релизе Объединенного института ядерных исследований в Дубне слова одного из участников эксперимента, старшего научного сотрудника Лаборатории ядерных проблем им. В.П. Джелепова ОИЯИ Олега Смирнова.

Свойство беспрепятственно проникать сквозь вещество позволяет нейтрино сохранять информацию о внутренних процессах в Солнце, но это же свойство делает их неуловимыми для обычных детекторов частиц. Поэтому для регистрации нейтрино используют специальные детекторы очень большой массы с тщательным контролем всех процессов, которые могут отражать взаимодействия нейтрино с электронами.

В тех редких случаях, когда нейтрино взаимодействует с электроном, он передает ему часть своей энергии. Этот процесс напоминает упругое столкновение бильярдных шаров. Электрон, получив некоторую начальную скорость, постепенно теряет ее в ходе взаимодействия с молекулами среды. Часть энергии при этом излучается в виде фотонов. Таким образом, взаимодействие нейтрино с электроном приводит к вспышке света, и несколько тысяч фотонов разлетаются от точки взаимодействия во все стороны.

Эти фотоны регистрируют тысячи детекторов света, а специальные приборы — фотоэлектронные умножители — позволяют оценить энергию, переданную электрону, а также определить точку, где произошло взаимодействие.

В сверхчувствительном детекторе Borexino, расположенном в самой большой подземной лаборатории в мире в Гран-Сассо в Центральной Италии, в качестве активной среды для регистрации нейтрино используется около 100 тонн жидкого сцинтиллятора.

"Несмотря на огромное количество солнечных нейтрино, проходящих через детектор (более секстиллиона за день) только полсотни нейтрино оставляют заметный "след" в детекторе за это же время. Ученые, работающие над анализом данных, смогли выделить сигнал, который можно объяснить только присутствием нейтрино из CNO-цикла. Таким образом доказано протекание ядерных реакций CNO-цикла в Солнце. Полный поток нейтрино из CNO-цикла составляет около одного процента от полного потока солнечных нейтрино", — поясняет Олег Смирнов.

Открытие имеет первостепенное значение для астрофизики, так как в звездах более массивных, чем Солнце, энергия выделяется в основном за счет углеродно-азотного цикла. Его механизм теперь экспериментально подтвержден.

https://ria.ru/20201125/neytrino-1586321490.html.

О том же и здесь:
Раскрыт последний секрет ядерного синтеза Солнца
https://ria.ru/20200626/1573508774.html.

P.S. Энергетика Солнца и звезд пока остается загадкой., Нейтрино, игнорируя теории, не хотят осциллировать...
http://www.termoyadu.net/index.php?topic=8.msg2566#msg2566.
- Ложь во спасение. Часть 1
http://www.termoyadu.net/index.php?topic=736.msg3257#msg3257.
-- Ложь во спасение. Часть 2
http://www.termoyadu.net/index.php?topic=736.msg3258#msg3258.

 2 
 : 24 Ноябрь 2020, 10:38:50 
Автор Avtor - Последний ответ от Avtor
Подробнее о событии...
Китайская ракета успешно вывела лунный зонд на заданную орбиту

01:34 24.11.2020
 
ВЭНЬЧАН (Китай), 24 ноя – РИА Новости. Китайская тяжелая ракета-носитель "Чанчжэн-5" успешно вывела на заданную орбиту возвращаемый аппарат "Чанъэ-5", который должен совершить посадку на Луну, собрать образцы лунного грунта и вернуться с ними на Землю, сообщили в государственном космическом управлении Китая (CNSA).

Пуск состоялся во вторник в 4.30 по местному времени (понедельник 23.30 мск) с космодрома "Вэньчан" на острове Хайнань. В случае успеха миссия "Чанъэ-5" станет первой с конца 1970-х годов миссией по доставке лунного грунта на Землю, ранее это удавалось сделать только СССР и США. Планируется, что Китай доставит на Землю около 2 килограммов реголита.

"Запущенная с космодрома Вэньчан ракета-носитель "Чанчжэн-5 " после около 2200 секунд полёта успешно вывела аппарат для лунных исследований" Чанъэ-5" на заданную орбиту", - сообщили в ведомстве.

Зонд "Чанъэ-5" изначально планировалось запустить в конце ноября 2017 года, однако из-за аварии ракеты-носителя "Чанчжэн-5" в июле 2017 года миссию пришлось отложить. Далее миссию назначали на конец 2019 года, однако она вновь была отложена.

Ракета-носитель "Чанчжэн-5" является основой всех ближайших амбициозных космических миссий Китая. В июле этого года с ее помощью был успешно запущен первый китайский зонд по исследованию Марса "Тяньвэнь-1" ("Вопросы к небу -1"). В дальнейшем при помощи "Чанчжэн-5" планируется также вывод на орбиту базового модуля для строительства китайской космической станции.

Для ракет-носителей семейства "Чанчжэн" это уже 353 миссия.

https://ria.ru/20201124/zond-1586008100.html,
https://www.gazeta.ru/science/2020/11/23_a_13372267.shtml.

P.S. План полета «Чанъэ-5» официально не опубликован, но баллистические соображения диктуют выход на окололунную орбиту 28 ноября и посадку на Луну в полнолуние 30 ноября. Старт взлетного аппарата ожидается 2 декабря, отлет к Земле – 14 декабря, незадолго до минимального склонения Луны, посадка возвращаемого аппарата – 17 декабря. Таким образом, вся экспедиция продлится 23 дня: https://novosti-kosmonavtiki.ru/articles/77328.html, https://astronomy.ru/forum/index.php/topic,187634.msg5206228.html#msg5206228.

P.P.S. Выход на окололунную орбиту запланирован в 17:45 мск 28 ноября 2020 года
https://zen.yandex.ru/media/eclipsechasers/sutki-do-vyhoda-na-okololunnuiu-orbitu-kitaiskoi-ams-chane5-posadka-na-poverhnost-zaplanirovana-na-vecher-29-noiabria-2020-goda-5fc1071ab1f92632ba6bd15a.
- Китайский зонд "Чанъэ-5" успешно вышел на орбиту Луны
https://ria.ru/20201128/chane-5-1586766248.html,
https://nplus1.ru/news/2020/11/28/change-5-orbit-insertion,
https://www.gazeta.ru/science/news/2020/11/28/n_15289153.shtml.

Другие новости...
- РКК "Энергия" предложила создать российскую космическую станцию
https://ria.ru/20201126/kosmos-1586442362.html,
https://kosmolenta.com/index.php/1676-2020-11-27-iss-ross.

 3 
 : 23 Ноябрь 2020, 21:09:51 
Автор Avtor - Последний ответ от Avtor
В преддверии запуска Т-15ДМ...
Альтернативна термоядерному синтезу: гибридный реактор. Сделано в России.

Кочетов Алексей

Вчера, 22 ноября 2020г.

В начале 1990-х годов всем стало ясно, что достичь вожделенного управляемого термоядерного синтеза (УТС) не удастся.

Ни одна исследовательская установка для получения УТС даже не приблизилась к запроектированным параметрам.

Создавать новые более мощные термоядерные реакторы для замены не оправдавших надежд JET (Европейский союз), JT-60 (Япония), Т-15 (СССР) и TFTR (США) было слишком дорого и, по сути, бессмысленно. Был очень вероятен повторный провал в достижении УТС.

Тогда в 1992 году стартует самый сложный и амбициозный научный проект за всю историю человечества – Экспериментальный Международный Термоядерный Реактор ( International Thermonuclear Experimental Reactor) - «ИТЭР».

Целью проекта является получение самоподдерживающейся термоядерной реакции с положительным коэффициентом выхода энергии. В первую очередь, нужно изучить все процессы термоядерного синтеза. Затем придётся обосновать экономическую целесообразность подобного метода получения энергии и определиться с типом новых термоядерных установок, которые будут более эффективны, чем ранее проектировавшиеся.

    В случае успеха проекта «ИТЭР» облик коммерческого термоядерного реактора может существенно отличаться от привычной схемы ТОКАМАКа.

А что если «ИТЭР» ждёт провал?

Маловероятно, что там не смогут получить самоподдерживающуюся реакцию термоядерного синтеза. Дело может быть в другом, а именно - в экономической целесообразности развития этого направления в энергетике в ближайшие 50-100 лет.

    Другими словами, стоимость термоядерного реактора может быть такова, что произведённая им энергия при современном технологическом уровне может оказаться в десятки раз дороже обычного.

Например, уровень нейтронного облучения стенок ТОКАМАКа всего за 5 лет работы в штатном режиме превращает их в решето, а менять самые дорогие элементы во всём реакторе каждые 5 лет - экономически невыгодно. Реактор попросту никогда не окупится. В «ИТЭР» как раз будут изучать эту проблему и искать решение и выход из этой ситуации.

Конечно, теоретически можно использовать термоядерную реакцию без нейтронного выхода, например, "Дейтерий + Гелий 3", или "Протон-борный синтез". Но давайте будем реалистами: мы даже самую простую термоядерную реакцию "Дейтерий-Тритий" не можем поддерживать и управлять ею.

   - Применение Гелия-3 в УТС требует промышленной добычи его на Луне, а это уже уровень межпланетной экспансии.
   
   - Протон-борный термоядерный цикл требует управления и удержания плазмы температурой не менее 3 миллиардов градусов Цельсия (в 10 раз больше, чем требуется для реакции Дейтерия с Тритием).

Таким образом, безнейтронные реакции – дело отдалённого будущего (лет через 100).

Однако нейтронное облучение будущего термоядерного реактора можно и даже нужно использовать во благо человечества.

Логично использовать высокоэнергетические нейтроны, которые уносят до 80% всего энергетического выхода от слияния Дейтерия с Тритием, для полезной работы – деления ядер урана-238, или синтеза нового ядерного топлива – урана-233.

Образованную в термоядерном реакторе плазму можно окружить "бланкетом". Бланкет можно заполнять ураном-238, или торием-232.

Физика процесса такова, что изотоп урана-238 непригоден для осуществления цепной ядерной реакции деления, потому что даже при делении урана-238 высвобождаются нейтроны с энергией, недостаточной для дальнейшего осуществления цепной ядерной реакции.

Ситуация с изотопом урана-235 противоположная, и он прекрасно делится нейтронами низких энергий (тепловыми нейтронами), поэтому эти изотопы используются для получения энергии в атомной энергетике.

Содержание изотопа урана-235 в урановой руде составляет около 0,7%. Практически всё остальное - это "ненужный" изотоп урана-238.

    Технология обогащения урана позволяет увеличить долю изотопа урана-235 для использования в качестве топлива на АЭС.

Однако ядро урана-238 прекрасно делится нейтронами высоких энергий – 10 МэВ и более. При этом нейтроны, выделяемые в результате деления ядра урана-238, обладают энергией 1,25 – 2 МэВ, в результате чего ядерная реакция деления затухает моментально.

При термоядерной реакции Дейтерия и Трития высвобождается нейтрон с энергией 14,1 МэВ, который с большой долей вероятности провзаимодействует с ядром урана-238, спровоцировав его деление. В результате подобной реакции энерговыделение реактора возрастает в 10 раз. А в топливный цикл можно будет включить ненужный (отвальный) уран-238, которого в 130 раз больше, чем изотопа урана-235. Технология получения тепловой и электрической мощности при подобных ядерных реакциях хорошо отработана и эффективна.

    За один акт синтеза дейтерия и трития выделяется 17,6 МэВ энергии, а за один акт деления ядра изотопа урана-238 - 200 МэВ энергии.

Подобную концепцию в России и Китае считают следующим логическим шагом в освоении УТС. Россия пошла куда дальше в развитии этого направления, и уже в 2017 году был подготовлен проект гибридного термоядерного реактора, направленный в администрацию президента. Данный проект представляет из себя прототип плазменного реактора, в котором осуществляется УТС, а оболочка реактора обложена ураном-238 или торием-232. Подобный гибридный реактор должен быть построен к 2035 году в качестве экспериментального.

Подобный подход даёт огромные преимущества для ядерной энергетики. Так, например, гибридный ядерный реактор на порядки безопаснее традиционной АЭС, а сценарии ядерных и даже локальных аварий невозможны из-за конструктивных особенностей ректора и физики процессов, протекающих в нём. Нейтроны высоких энергий очень эффективно выжигают ядерные отходы, наработанные в АЭС. Сам процесс выгорания любых типов ядерных отходов экспериментально подтверждён процессами, происходящими в быстрых реакторах типа БН-600/800. Так появилась концепция безвредной для экологии утилизации отработанного ядерного топлива до состояния естественной радиоактивности земной породы. При замыкании ядерного топливного цикла утилизация ОЯТ подобным образом может занять от 100 до 500 лет. В Гибридных реакторах этот процесс будет идти, как минимум, в 10 раз быстрее. Учитывая количество уже накопленного в России изотопа урана-238, запасов уже добытого урана даже с учётом полного перехода на выработку энергии (тепловой и электрической) гибридными реакторами нам хватит на тысячу лет.

    При использовании тория-232 в гибридном реакторе нейтронное облучение трансмутирует его в уран-233. Использование урана-233 в качестве топлива на АЭС не даёт таких долгоживущих радиоактивных отходов с периодами полураспада в сотни тысяч лет, как при использовании урана-235. Максимум, что мы можем получить, - это радиоактивные отходы с периодами полураспада в сотни лет. При этом тория-232 в земной коре в 3-4 раза больше, чем урана.

Россия, реализовав концепцию Гибридных реакторов, закроет для себя энергетический вопрос на века.

По состоянию на 2020 год построен первый прототип будущего экспериментального реактора в виде модернизированного советского ТОКАМАКа Т-15. Фактически, это полностью новый ТОКАМАК, индекс которого теперь Т-15ДМ.

    Сам ТОКАМАК модернизирован в рамках проекта «ИТЭР», который обязывает стран-участников иметь собственный ТОКАМАК для отработки исследований, полученных на «ИТЭР». В проекте участвуют 35 стран.

Этот модернизированный ТОКАМАК Т-15ДМ располагает двумя режимами работы, и второй режим - это как раз эксплуатация ТОКАМАКа в качестве гибридного прототипа.

В Т-15ДМ запроектирован "гибридный режим", при котором происходят ядерные реакции в бланкете.

Запуск ТОКАМАКа Т-15ДМ запланирован на декабрь 2020 года. Сейчас идут пусконаладочные работы.

Но что самое главное, так это то, что гибридная система, построенная по схеме ТОКАМАКа, не нуждается в полноценном термоядерном синтезе со злополучным преодолением критерия Лоусона. Вместо 150-300 миллионов градусов Цельсия плазму нужно нагреть до температуры "всего" 50 миллионов градусов Цельсия. Нейтроны с нужной энергией будут образовываться в результате взаимодействия плазмы и ускоренных в инжекторах атомов дейтерия. К тому же, из-за эффекта туннелирования частиц будет происходить термоядерный синтез, в результате которого будет дополнительно выделяться нейтронный поток. Таким образом, создание гибридного реактора возможно уже сегодня, и задачи освоения УТС перед концепцией гибридного реактора остро не стоит.

В заключении можно сказать, что проблемы освоения УТС не являются критическими для нашей цивилизации. У нас есть энергоёмкие альтернативны в виде замыкания ядерного топливного цикла и создания гибридных реакторов, что даст нам ещё пару сотен лет на эффективное освоение УТС даже самых сложных и перспективных термоядерных реакций и отработки полного цикла безопасной эксплуатации УТС.

https://zen.yandex.ru/media/dbk/alternativna-termoiadernomu-sintezu-gibridnyi-reaktor-sdelano-v-rossii-5fb1cc64b321633937269fe8.

 4 
 : 21 Ноябрь 2020, 10:46:21 
Автор Avtor - Последний ответ от Avtor
Ожидаемо констатирована успешная реализация Проекта...
Пандемия коронавируса не повлияла на график строительства уникального реактора во Франции

Пандемия коронавируса практически не повлияла на график строительства уникального международного экспериментального термоядерного реактора ИТЭР (ITER, International Thermonuclear Experimental Reactor), который возводят на юге Франции ведущие страны мира.

Об этом было заявлено в ходе 27-го заседания Совета ИТЭР, прошедшего во Франции, сообщает пресс-служба Проектного центра ИТЭР (входит в Росатом) в пятницу, передает tass.ru

"Совет ИТЭР высоко оценил усилия Организации ИТЭР и национальных Агентств ИТЭР за находчивость и решительное осуществление плана обеспечения непрерывности работ в условиях пандемии коронавируса. Расстановка приоритетов по ключевым работам и запуск "Новой нормы" в Организации ИТЭР обеспечили продуктивность при строгом соблюдении гигиенических мер, что позволило в значительной степени сохранить целостность тесно интегрированного графика реализации проекта при минимизации риска и влияния на здоровье и безопасность персонала и сотрудников", - говорится в сообщении пресс-службы.

Заседание Совета ИТЭР прошло в формате видеоконференции, с российской стороны в нем приняли участие представители Росатома.

"Проект ИТЭР перешел в новую, решающую стадию - началось сооружение реактора из тех компонентов, которые продолжают поставлять стороны-участницы, в том числе, конечно, и Россия. Это результат активной совместной работы, и мы полны энтузиазма ее продолжать", - приводятся в сообщении слова главы российского Агентства ИТЭР Анатолия Красильникова.

Проект ИТЭР создан на основе международного соглашения между Китаем, ЕС, Индией, Японией, Республикой Корея, Россией и США. В основу реактора положена разработанная отечественными учеными установка токамак, которая считается наиболее перспективным устройством для осуществления управляемого термоядерного синтеза. Цель проекта - продемонстрировать, что термоядерную энергию можно использовать в промышленных масштабах. Первая плазма на реакторе ИТЭР должна быть получена в 2025 году.

https://point.md/ru/novosti/v-mire/pandemiia-koronavirusa-ne-povliiala-na-grafik-stroitel-stva-unikal-nogo-reaktora-vo-frantsii, http://atominfo.ru/newsz02/a0614.htm.

P.S. Негативные последствия коронавируса решили озвучить на следующем заседании Совета, да и заодно, скорее всего, перенести срок окончания строительства монстра: "На своём следующем заседании в июне 2021 года Совет ИТЭР рассмотрит влияние пандемии COVID-19, а также иных возможных причин отставания": http://atominfo.ru/newsz02/a0614.htm.

 5 
 : 16 Ноябрь 2020, 18:09:53 
Автор Avtor - Последний ответ от Avtor
Подробнее о событии...
Космический корабль Crew Dragon с четырьмя астронавтами отправился на МКС

ВАШИНГТОН, 16 ноя — РИА Новости. Во Флориде к Международной космической станции стартовала ракета-носитель Falcon 9 с кораблем Crew Dragon. Старт состоялся в расчетные 03:27 мск в понедельник (19:27 воскресенья по времени Восточного побережья США).

На борту Crew Dragon находятся астронавты НАСА Майкл Хопкинс, Виктор Гловер и Шэннон Уокер, а также японец Соити Ногути.

Через девять минут после старта первая ступень Falcon 9 совершила успешную посадку на плавучую платформу в Атлантическом океане. НАСА и SpaceX планируют использовать ее для следующего пилотируемого запуска Crew Dragon к МКС.

Вскоре после посадки первой ступени в 03:40 мск ведущий трансляции НАСА подтвердил, что корабль отделился от несущей его ракеты-носителя. "Экипаж успешно выведен на орбиту", — сообщил он. Прибытие корабля на МКС планируется на раннее утро вторника. В ходе трансляции идет включение как из Центра управления полетами НАСА, так и из кабины корабля.

Для созданного компанией SpaceX Илона Маска корабля Crew Dragon это первый регулярный рейс на МКС.  

Испытательный полет с двумя астронавтами состоялся в мае. Также это первый рабочий пилотируемый полет и для самих США после завершения в 2011 году программы Space Shuttle.

https://ria.ru/20201116/raketa-1584762291.html,
https://www.gazeta.ru/science/2020/11/16_a_13362373.shtml.

P.S. Корабль Crew Dragon пристыковался к МКС
https://ria.ru/20201117/mks-1584928313.html.

 6 
 : 01 Ноябрь 2020, 14:04:54 
Автор Avtor - Последний ответ от Avtor
Британцы разработают собственную термоядерную электростанцию

Великобритания приступит к проектированию термоядерной электростанции на основе компактного сферического токамака. Правительство страны выделило деньги на реализацию концепта, который планируется завершить к 2024 году. За это время планируется проведение научных исследований, изготовление прототипов компонентов и создание оборудования для испытаний технологии, говорится в пресс-релизе на сайте британского правительства.

Термоядерная энергетика ставит своей задачей получение полезной энергии при слиянии ядер легких элементов. Такая схема в самом общем смысле аналогична происходящим в ядрах звезд реакциям. Основной проблемой является создание и поддержание подходящих условий.

Так как ядра заряжены одинаково, то они испытывают кулоновское отталкивание, из-за чего их сложно сблизить, а без этого их слияние невозможно. Преодолеть это можно путем нагрева вещества до очень высоких температур, но тогда в случае контролируемого процесса возникает две проблемы: разогретая плазма повреждает материалы, с которыми приходит в контакт, а связанное с температурой высокое внутреннее давление приводит к быстрому расширению и охлаждению.

В звездах эти обстоятельства обходятся с помощью огромной массы вышележащих слоев. В этом смысле звезды — не очень эффективные преобразователи энергии — на единицу массы всего Солнца выделяется примерно столько же энергии, сколько и в случае гниющих листьев, несмотря на высокое абсолютное энерговыделение в ядре.

Ученые предложили несколько возможных схем удержания плазмы, которые, как правило, связаны с сильными магнитными полями. Основными концепциями являются токамак и стелларатор. Термоядерные реакторы разных конструкций есть во многих странах мира, в том числе в России, США, Германии и Китае.

Самым крупным проектом в этой области является международный токамак ITER, который в данный момент строится во Франции. Однако эта установка не будет электростанцией — вырабатываемое ею тепло планируется рассеивать, а основным результатом ее функционирования должна стать доработка технологий. Первой настоящей термоядерной электростанцией может стать следующий токамак DEMO, но его постройка завершится не раньше 2040 года.

Великобритания решила самостоятельно включиться в гонку за реализацией коммерчески жизнеспособного термоядерного реактора. Правительство выделило 220 миллионов фунтов (примерно 270 миллионов долларов США) на доработку проекта STEP (Spherical Tokamak for Energy Production — сферический токамак для производства энергии). Эту технологию развивают в Калхэмском центре термоядерной энергии (Culham Centre for Fusion Energy, CCFE), подразделении Управления по атомной энергии Соединённого Королевства (United Kingdom Atomic Energy Authority, UKAEA). В этом научном центре уже создано два современных токамака — MAST и JET.

В то время как у обычного токамака плазма находится в виде тора, в сферическом токамаке сделана попытка максимального уменьшения малого радиуса, в результате чего форма плазменного облака получается близкой к шарообразной, ее также сравнивают с яблоком с удаленной сердцевиной. Такая конструкция позволяет сдерживать плазму менее интенсивными магнитными полями, но масштабируемость такого подхода находится под вопросом.

Чиновники ожидают, что выделенных средств хватит для разработки к 2024 году окончательного варианта проекта. В результате также должен появиться реализуемый план строительства полноценной термоядерной электростанции к 2040 году. В документе отмечается, что установка MAST будет играть ключевую роль в новом проекте, ее запуск после обновления планируется в начале 2020 года.

Ранее мы сообщали, что плазменный шнур в токамаке EAST продержался дольше 100 секунд, частная британская компания получила первую плазму в новом токамаке, а на установке KSTAR поставили мировой рекорд по удержанию плазмы. В целом в последние годы наблюдается всплеск исследований в области термоядерной энергетики, о чем мы писали в материале «Больше токамаков».

Тимур Кешелава

https://nplus1.ru/news/2019/10/04/uk-tokamak,
http://www.atomic-energy.ru/news/2019/10/07/98023,
http://lenr.seplm.ru/novosti/anglichane-sobralis-stroit-reaktor-termoyadernogo-sinteza.

Для справки. Британцы зациклились на сферических токамаках (http://www.termoyadu.net/index.php?topic=6.msg3168#msg3168), но пока результаты более чем скромные: http://www.termoyadu.net/index.php?topic=6.msg3270#msg3270. Наши термоядерщики тоже уцепились за сферические токамаки (http://www.termoyadu.net/index.php?topic=6.msg3183#msg3183), но в гибридном их приложении: новый российский токамак Т-15МД - почти сферический: https://tnenergy.livejournal.com/98304.html, http://www.termoyadu.net/index.php?topic=6.msg3356#msg3356.
ИМХО. К огорчению сторонников термояда, термоядерного синтеза нет в Природе и он невозможен, поэтому все потуги по его осуществлению на сферических токамаках или иных установках были, есть и останутся тщетными: http://www.termoyadu.net/index.php?topic=682.msg2297#msg2297.
Не прошло и года...
Первая плазма получена на британском сферическом токамаке MAST Upgrade

AtomInfo.Ru, ОПУБЛИКОВАНО 31.10.2020

Первая плазма получена на модернизированном сферическом токамаке "MAST Upgrade" в Британии.

Токамак MAST (Mega Ampere Spherical Tokamak) работал в британском центре термоядерных исследований в Кулхэме с 2000 по 2013 годы. Токамак "MAST Upgrade" является модернизированной версией исходной установки.

На "MAST Upgrade" будут проводиться экспериментальные исследования в интересах британской программы STEP (Spherical Tokamak for Energy Production), предусматривающей создание демонстрационной термоядерной электростанции к 2040 году.

http://atominfo.ru/newsz02/a0519.htm.

В дополнение...
- В Англии запустили сферический термоядерный реактор
http://rosinvest.com/novosti/1421964.
- В Великобритании запущен реактор термоядерного синтеза  
https://polit.ru/news/2020/11/02/ps_uk_tokamak/.

Другие новости...
- Росатом хочет направить до 152,7 миллиардов рублей на технологии управляемого термоядерного синтеза: http://atominfo.ru/newsz02/a0525.htm.
- НАСА выбирает средний путь между холодным и горячим термоядерным синтезом  
https://news.rambler.ru/science/45219336-nasa-vybiraet-sredniy-put-mezhdu-holodnym-i-termoyadernym-sintezom/.

 7 
 : 28 Октябрь 2020, 09:41:18 
Автор Avtor - Последний ответ от Avtor
К 35-летию договорённостей по ИТЭР между СССР и США (заключение)...

На вопросы корреспондентов электронного издания AtomInfo.Ru ответил главный конструктор АО "НИКИЭТ" по ядерно-физическим системам ИТЭР Юрий СТРЕБКОВ (выпускник МГТУ им. Баумана).

Юрий Сергеевич, НИКИЭТ чаще всего ассоциируется с такими проектами как РБМК, БРЕСТ или подводные лодки. Какую роль ваш институт играет в термоядерном направлении?

Конечно, в нашей стране, говоря о термояде, в первую очередь вспоминают Курчатовский институт как научного руководителя направления и НИИЭФА им. Д.В.Ефремова как главного конструктора установок на основе токамака.

У нашего института есть свой фронт работ. Мы занимаем лидирующее положение в разработке бланкетов, в особенности, бланкетов для будущих гибридных реакторов. Это важная тематика, но хочу подчеркнуть, что она является частью общих усилий большой команды российских организаций и предприятий.

Когда в НИКИЭТе начались работы по термояду?

Вам не повезло, я слишком молод для того, чтобы быть свидетелем начала интереса нашего ннститута к термояду. Мне всего только 71 год.

После того, как Евгений Олегович Адамов в 1986 году возглавил НИКИЭТ, он в мае 1987 года назначил меня руководителем отдела по разработке бланкетов. На новой должности я, естественно, постарался ознакомиться с историей разработок по ТЯР.

Понимаю я так - термоядерное направление в НИКИЭТ развивается с первой половины 70-х годов. Старшие коллеги упоминали, что в те времена Николай Антонович Доллежаль приезжал на совещания в Курчатовский институт, где обсуждалось наше участие в термоядерных проектах.

Но серьёзные, мощные инженерные работы начались позже, примерно в 1985-1986 годах.

Каким проектом вы тогда занимались? ИТЭРа на тот момент ещё не было.

Был интересный национальный проект опытного термоядерного реактора ОТР. Распределение обязанностей в ходе его разработки было классическое: научный руководитель - Курчатовский институт, главный конструктор токамачной установки - НИИЭФА, которым руководил Василий Андреевич Глухих, а НИКИЭТ брал на себя разработку бланкета.

До проекта ОТР были и другие, тоже очень интересные разработки термоядерных установок, которые, как тогда казалось, приближали нас к рождению термоядерной энергетики. Может быть, наши представления были слегка наивными, но проекты разрабатывались. Главное - приобретался опыт.

Идея международного проекта ИТЭР зародилась примерно в то же время. В 1985 году Евгений Павлович Велихов предложил руководству нашей страны объединить с США и Европой усилия по созданию экспериментального термоядерного реактора.

Согласие на высшем уровне было получено, колёса истории закрутились, хотя и не так быстро, как нам хотелось бы, но в итоге в 1988 году проекту ИТЭР был дан официальный старт и началась фаза концептуального проектирования установки.

Создание реактора ИТЭР - задача непростая, причём не только в смысле техники. Страны, участвующие в проекте, представляют более половины населения Земли. У каждой из этих стран есть свой менталитет и свои законы, и для достижения общего языка приходилось прикладывать значительные усилия.

Стороны ИТЭР (страны-участницы) относились к проекту по-разному. Как ни удивительно, но с проблемами сталкивались американцы. Как мне кажется, дело у них не в деньгах, США богатейшая страна. Они считают, что должны быть везде и всегда первыми, а в ИТЭРе они не первые, не последние, они "одни из", потому что ИТЭР - это команда.

За время, прошедшее с момента старта, проект сильно подорожал. Вначале он оценивался примерно в 10 миллиардов долларов в деньгах февраля 1989 года. Сегодня его смету считают в евро, и суммы там выше...

Сегодня, я считаю, точка невозврата у проекта ИТЭР пройдена, он вышел на стадию монтажа оборудования. Во многом это заслуга нынешнего генерального директора международной организации ITER Бернара Биго...

                                                                           .   .   .

После ИТЭР в Европе предполагается реализация программы ДЕМО. А у нас?

Вопрос сложный и больной. Да, вы правы, в Европе не просто предполагается, а уже существует программа ДЕМО. Структура под названием F4E (Fusion for Energy) не только ведь для нужд ИТЭР была создана, под её эгидой проводятся и другие работы.

С европейскими работами, ведущимися в интересах ДЕМО, я неплохо знаком и считаю, что европейцы здесь впереди планеты всей по проработанности и обоснованности модулей. На втором месте - Япония.

Мы, в свою очередь, неоднократно ставили вопрос: "Для чего мы принимаем участие в проекте ИТЭР? У нас должно быть своё национальное развитие по управляемому термоядерному синтезу". В том числе, об этом часто говорил Олег Геннадьевич Филатов, возглавлявший НИИЭФА, сейчас он научный руководитель института.

Действительно, а что будет после ИТЭР у нас? До недавнего времени, ответ был примерно такой: "А у нас своей национальной программы нет". Есть старые токамаки и уже не очень молодые специалисты.

И очень хорошо, что в последние годы наметились перемены к лучшему. Благодаря инициативе президента НИЦ "Курчатовский институт" Михаила Валентиновича Ковальчука, пять лет назад его предложение по развитию работ по управляемому термоядерному синтезу получило поддержку у руководства страны.

Закрутилась работа, был сделан первый вариант национальной программы, за ним последовали обсуждения и уточнения.

В апреле 2020 года президент России Владимир Владимирович Путин поручил правительству разработать и утвердить программу развития атомной науки и технологий в России до 2024 года. Составной частью в программу входит и термоядерное направление.

Я надеюсь и чувствую, что программа будет реализована. Неважно, в каком масштабе она будет принята. Важно, что она начнётся в 2021 году. Если говорить персонально обо мне, то я хотел бы использовать свой опыт и передать его привлекаемой молодёжи...

http://atominfo.ru/newsz02/a0494.htm.

P.S. Да, действительно, проект ИТЭР стартовал в 1985 году с подачи академика Велихова, который убедил руководство СССР предложить лидерам США и Франции совместное строительство мега-токамака. Опыт был: в нашей стране был запущен токамак Т-15 со сверхпроводящей магнитной системой. Правда, Т-15 очень скоро "сдох", так и не выйдя на запланированные параметры: http://wiki.tpu.ru/wiki/%D0%A2%D0%BE%D0%BA%D0%B0%D0%BC%D0%B0%D0%BA_%D0%A2-15, http://www.termoyadu.net/index.php?topic=15.msg2532#msg2532, http://www.proza.ru/2012/06/27/295. Встала дилемма: или воплощать следующий токамак Т-20 (близкий по техническим параметрам к ИТЭР) в СССР без всяких гарантий на успех, или "выкатить" его на международный уровень. Во втором случае убивались сразу два зайца: экономились бюджетные деньги, а при неудаче (как с Т-15) - все расходы и научно-техническая несостоятельность Проекта "размазывалась" на всех стран-участниц. Как видим, одержал верх второй вариант (http://www.termoyadu.net/index.php?topic=7.msg3411#msg3411).

P.P.S. Точка невозврата в строительстве ИТЭР пройдена на самом деле, и теперь остаётся лишь наблюдать за сборкой монстра. В ноябре пройдёт очередное заседание Совета ИТЭР, на котором ожидаемо будет констатирована успешная реализация Проекта, как и на предыдущем, июньском заседании (http://www.termoyadu.net/index.php?topic=7.msg3457#msg3457), разве что с поправкой на коронавирус как основную причину отставания от графика, которое имеет место быть и которое обещано преодолеть до конца текущего года: http://atominfo.ru/newsz02/a0072.htm, http://atominfo.ru/newsz02/a0501.htm.

P.P.P.S. Снова пошли разговоры о том, что США могут покинуть проект по созданию термоядерного реактора: https://pronedra.ru/ssha-mogut-pokinut-proekt-po-sozdaniyu-63412.html.
Ранее уже была угроза этого шага: http://www.termoyadu.net/index.php?topic=7.msg2998#msg2998. Теперь же угроза может быть и реальной. Вон, предлагает же Конгресс США сократить бюджетное финансирование на строительство реактора VTR (http://atominfo.ru/newsz02/a0589.htm), а с ИТЭРом могут поступить ещё радикальнее: вообще покинуть Проект! Тем более, что у США изначально были свои основания не участвовать в Проекте: https://pikabu.ru/story/a_mezhdunarodnyiy_tokamak_vsyo_stroitsya_7088153,
https://www.gazeta.ru/science/2020/11/18_a_13366183.shtml.

 8 
 : 27 Октябрь 2020, 14:40:37 
Автор Avtor - Последний ответ от Avtor
Исследование Луны...
NASA подтвердило наличие воды на видимой стороне Луны

Американские исследователи заявили об идентификации молекулярной воды, которая содержится на лунной поверхности.

Сообщение размещено на сайте NASA. В результате исследования, проведенного с помощью спектрометра стратосферной обсерватории SOFIA, обнаружена спектральная сигнатура H2O, нехарактерная для гидроксильных соединений в минералах. Полученные результаты подтверждают присутствие воды в высоких южных широтах.

Также специалисты из Департамента астрофизических и планетарных наук Колорадского университета и других американских университетов исследовали так называемые холодные ловушки с температурой минус 180 градусов Цельсия, в которые не попадают солнечные лучи и в которых может находится замороженная вода.

По расчетам ученых, водяной лед может находится на 40 000 квадратных километров лунной поверхности. Причем выше всего его концентрация будет в таких кратерах как Шеклтон и Шумейкер, расположенных у южного полюса спутника Земли.

По мнению исследователей, вода на Луну могла попадать с кометами и астероидами, и ее можно использовать для питья, производства ракетного топлива и других нужд.

https://rg.ru/2020/10/26/reg-ufo/uchenye-podtverdili-nalichie-vody-na-lune.html,
https://lenta.ru/news/2020/10/26/tothemoon/, https://ria.ru/20201026/luna-1581628545.html.

P.S. По словам главы NASA Джима Брайденстайна, "наличие воды на Луне является ключевым для планов дальнейших исследований ведомства", в частности, высадки американских астронавтов на Луну в 2024 году в рамках программы "Артемида": https://www.gazeta.ru/science/news/2020/10/26/n_15135865.shtml.
Ранее наличие воды на Луне отрицалось: http://jalishev.spb.ru/articles/03.php.

P.P.S. При всём оптимизме главы НАСА, по факту астрономы при помощи летающей обсерватории SOFIA обнаружили лишь молекулы воды в грунте лунного кратера Клавий. "Несмотря на то, что содержание воды в грунте крайне мало, наблюдения показали, что ее молекулы способны сохраняться на видимой стороне Луны, будучи заключенными в частицы грунта". Только и всего!: https://nplus1.ru/news/2020/10/26/sofia-water-moon, https://www.gazeta.ru/science/2020/10/26_a_13334389.shtml.

P.P.P.S.
- Российские ученые удивлены, что американцы заново нашли воду на Луне
https://ria.ru/20201026/luna-1581656869.html.
-- В РАН назвали заявление НАСА об обнаружении воды на Луне пиаром
https://ria.ru/20201028/luna-1581881640.html.

Другие новости...
- Китайский зонд "Чанъэ-4" возобновил работу на 24-й лунный день
http://russian.news.cn/2020-11/10/c_139505293.htm.
- Китай запустит станцию Chang’e 5 для доставки грунта с Луны 23 ноября
https://kosmolenta.com/index.php/1669-2020-11-13-change5.

 9 
 : 21 Октябрь 2020, 16:50:47 
Автор Avtor - Последний ответ от Avtor
К 35-летию договорённостей по ИТЭР между СССР и США (продолжение)...
Мир без нефти и урана. Вклад России в важнейший проект мировой энергетики

09:00 20.10.2020 (обновлено: 13:36 21.10.2020)
 
Проект ИТЭР (Международный термоядерный экспериментальный реактор), как уверены ученые, позволит человечеству получить новый экологичный и безопасный источник энергии, использующий практически неиссякаемые запасы топлива, один грамм которого эквивалентен минимум десяти тоннам углеводородов. Летом 2020 года руководители государств-участников дали старт сооружению основного элемента будущего реактора – токамака, то есть системы удержания и нагрева плазмы. О вкладе российских ученых в один из самых масштабных проектов человечества в области энергетики – в новом материале РИА Новости.

Мир термоядерной энергии

Термоядерные реакции протекают с выделением огромной энергии, однако плазма, в которой идут эти реакции, имеет температуру в десятки и сотни миллионов градусов – притом, что самые термостойкие материалы выдерживают не более 3-4 тысяч градусов.

Использовать термоядерную энергию можно, если "оторвать" плазму от стенок реактора за счет сильных магнитных полей, объяснили ученые. Лучшая магнитная ловушка для термоядерной плазмы – токамак – была предложена советскими академиками Сахаровым и Таммом в начале 1950-х годов и впервые создана в Курчатовском институте.

В термоядерном реакторе, в отличие от атомного, происходит не деление ядер, а их синтез при плотности плазмы в сто тысяч раз меньше, чем плотность воздуха. Благодаря этому взрыв невозможен, подчеркнули ученые, что делает реактор принципиально безопасным. Продуктами работы такого реактора будут безвредный гелий и тритий, использующийся затем для поддержания самой реакции.

”ИТЭР – ворота в термоядерную энергетику, через которые мир должен пройти". Эти слова принадлежат инициатору проекта, почетному президенту Курчатовского института, академику Евгению Велихову. Задача ИТЭР, идея создания которого была выдвинута в середине 1980-х годов, заключается в демонстрации возможности использования термоядерной энергии в промышленных масштабах.

В настоящее время в проекте семь участников: Европейский Союз, Индия, Китай, Республика Корея, Россия, США и Япония. Штаб-квартира ИТЭР расположена в Кадараше, Франция, неподалеку от строительной площадки.

Кроме фундаментального идейного и инженерного вклада, ИТЭР, по словам ученых, уже обязан России разработкой ряда ключевых элементов, среди которых самый совершенный сверхпроводящий кабель и лучшие в мире гиротроны – устройства для нагрева плазмы электромагнитным излучением сверхвысокой частоты.

Трудная задача с тритием

В качестве топлива в ИТЭР будет использована смесь изотопов водорода – дейтерия и трития.

Дейтерий можно относительно легко производить из воды, а тритий будет воспроизводиться в самом термоядерном реакторе. ИТЭР, как экспериментальная установка, еще не будет производить электроэнергию, но на коммерческих термоядерных реакторах, по расчетам ученых, один грамм топлива будет давать столько же энергии, сколько сейчас дают от 10 до 20 тонн углеводородов.

Один из рисков в работе реактора будет заключаться в накоплении радиоактивного трития в разрядной камере токамака, поэтому его количество ограничено стандартами безопасности.

Материалы внутренней стенки камеры – вольфрам и бериллий – не накапливают много трития, но тем не менее, как объяснили ученые, для стабильной работы реактора необходимы методы регулярного дистанционного контроля уровня трития.

Суммарное количество этого изотопа в камере можно определить из баланса поступившего и откачанного газа. Для более точного локального измерения его содержания в стенках реактора ученые решили использовать лазерное излучение: под его воздействием будет происходить своего рода "испарение" поверхностного слоя стенки с последующим захватом и анализом образовавшихся частиц.

Решением этой ключевой проблемы будет заниматься специально созданная в 2020 году в Институте лазерных и плазменных технологий НИЯУ МИФИ лаборатория под руководством молодого ученого, доцента кафедры физики плазмы Юрия Гаспаряна.

"Наша задача – научиться измерять концентрацию легких и очень подвижных изотопов водорода при минимально возможном воздействии на стенку реактора. Испытания запланированы как на лабораторных установках, так и на токамаке Глобус-М2 в ФТИ имени А.Ф. Иоффе", – рассказал ученый.

Опасная пыль

Идея магнитной термоизоляции плазмы в тороидальном, то есть "бубликовидном", магнитном поле, лежащая в основе токамака, как объяснили ученые НИЯУ МИФИ, все же не исключает попадания частиц и излучения на стенки реактора. Под их воздействием от стенок будут отделяться макроскопические продукты эрозии, или, проще говоря, пыль.

Расчеты физиков показывают, что частицы пыли будут собираться на дне разрядной камеры токамака, что представляет опасность для реактора: пыль сама по себе пожароопасна, а кроме того она активно накапливает радиоактивный тритий.

Для того, чтобы контролировать количество и состав пыли, не останавливая реактор, группа ученых НИЯУ МИФИ во главе с профессором Леоном Беграмбековым предложила использовать особый зонд с приложенным к нему электрическим потенциалом.

В электрическом поле между зондом и поверхностью стенки крупинки пыли будут электризоваться и притягиваться в специальный приемник. Перемещаясь над поверхностью, зонд как пылесос будет собирать пыль, перемещая ее затем из реактора через специальные шлюзы.

Научный авангард

В центральной команде проекта в Кадараше работают тысяча сто специалистов из всех стран-участниц, и еще несколько десятков тысяч ученых и инженеров трудятся в домашних командах.
"НИЯУ МИФИ и, в частности, кафедра физики плазмы – один из активных участников проекта, в том числе и в подготовке кадров. Более полувека наша кафедра готовит специалистов в области физики горячей плазмы и управляемого термоядерного синтеза. Наши выпускники трудятся как в центральной, так и в домашней командах ИТЭР, а география наших коллабораций простирается почти по всей планете", – рассказал заведующий кафедрой физики плазмы НИЯУ МИФИ Валерий Курнаев.

За время существования кафедры ее специалистами были созданы установки, позволяющие исследовать взаимодействие плазмы и ее компонентов (ионов, электронов, нейтральных атомов) с различными материалами. Были разработаны теории и коды для описания этих процессов и подготовлено большое число ученых.

Среди работ, уже выполненных специалистами кафедры для ИТЭР, создание метода спектроскопического обнаружения протечек воды в плазму из охлаждаемых элементов первой стенки реактора, разработка методик для изучения воздействия чистящего тлеющего разряда на первые зеркала диагностических лазерных систем, а также создание предохранительных экранов для коллекторов электромагнитного излучения.

https://ria.ru/20201020/iter-1580507723.html.

В дополнение...
- Термояд и НИКИЭТ. Непростой проект ИТЭР
http://atominfo.ru/newsz02/a0494.htm.

Предыстория здесь: http://www.termoyadu.net/index.php?topic=7.msg3478#msg3478.

Повторюсь. 80% энергии термоядерного синтеза для реакции DT выделяется в виде быстролетящих нейтронов, которые порождают вторичное гамма-излучение и активируют материалы конструкции реактора. Это обстоятельство ставит "крест" на термоядерных реакторах, работающих на дейтерий-тритиевой смеси. В своё время именно при попытке достичь точку безубыточности, работая на D-T смеси, вышел из строя и позже был утилизирован американский (принстонский) токамак TFTR: https://ru.qwe.wiki/wiki/Tokamak_Fusion_Test_Reactor.
ИТЭР - не исключение: https://izborskiy-club.livejournal.com/596736.html.

Далее. Не от хорошей жизни устами директора российскрго Центра проекта ИТЭР Анатолия Красильникова в РФ провозглашено гибридное будущее термояда: http://www.termoyadu.net/index.php?topic=6.msg3424#msg3424.
Инициатива принадлежит академику Велихову, который ещё лет десять тому назад предложил куда подальше задвинуть "чистый" термояд и заняться "гибридом": http://www.termoyadu.net/index.php?topic=684.msg2324#msg2324, https://polit.ru/article/2012/12/18/ps_hybrid_tokamak/.
Идея гибридного реактора вполне себе реализуема, и, по мнению Красильникова, его создание - "это только вопрос времени, проектирования, лицензирования, подбора оптимальных материалов".

И ещё. Изобретённый в нашей стране токамак изначально был всего лишь источником быстрых, высокоэнергетических нейтронов, поэтому сразу надо было искать применение ему (токамаку) именно в этом качестве, а не пытаться придать ему функции атомного реактора. Упущено время, потрачены средства, а в итоге (в сухом остатке!) всего лишь "гибрид", которому ещё надо будет постараться, чтобы найти себе место среди успешно освоенных реакторов на быстрых нейтронах: http://www.termoyadu.net/index.php?topic=6.msg2768#msg2768.

                                                                                              Ф.Х.Ялышев, изобретатель,
                                                                                        выпускник МВТУ им. Н.Э.Баумана, 1971г.

 10 
 : 04 Октябрь 2020, 09:02:25 
Автор Avtor - Последний ответ от Avtor
К 35-летию договорённостей по ИТЭР между СССР и США...
Афера века — проект ИТЭР | Куда плывет «горячий термояд»?

... Международный экспериментальный термоядерный реактор (проект ITER) считается одним из наиболее сложных сооружений в истории. История его восходит к 1985 году, когда прошел первый саммит Рейгана и Горбачева, на котором было принято решение о сотрудничестве в сфере термоядерных исследований. Других "точек соприкосновения" у Горбачева с Рейганом просто не нашлось.

В проекте ИТЭР участвуют ЕС, США, Россия, Китай, Индия, Япония, Корея и Казахстан. Ранее стоимость проекта оценивалась в 4,6 миллиардов евро, потом она возросла до 10, теперь она достигла 20 миллиардов. Возможно, и даже вероятно, что она будет расти и дальше. В прошлом году руководство ИТЭР отрапортовало о 50% готовности, что оно расценило как довольно высокий процент, и сигнал о том, что "проект осуществим". По его оценкам, реактор может начать работу до конца 2025 года, а еще десять лет спустя, в 2035 – сможет... выйти на проектные параметры. Удастся ли уложиться в намеченные сроки, есть сомнения, поскольку все эти десятилетия проект развивался очень медленно, и сегодня (напомню, что ему уже более 30 лет) отстает от своего графика на 6 лет.

Возникли и политические сложности. Соединенные Штаты то выходили из проекта, то снова вступали в него, а в прошлом году администрация президента Д.Трампа внезапно урезала свое, и без того довольно скромное финансирование, возобновив его только весной 2018 - около 120 миллионов долларов в год. Большую часть расходов, 45%, несет Евросоюз, это порядка полумиллиарда евро ежегодно.

ИТЭР столкнулся не только с финансовыми трудностями. С самого начала проект критиковали по разным направлениям. Сомнения вызывала стойкость используемых материалов, наведенная радиоактивность, необходимость огромных капиталовложений, а французская ассоциация противников ядерной энергетики со звучным названием Sortir du nucléaire заявила, что проект опасен потому, что ученые просто не понимают, как управлять плазмой при столь высокой температуре.

С критическими заявлениями выступили и европейские «зеленые». Депутат европарламента Ребекка Хармс заявила, что средства, потраченные на проект, можно было бы направить и на более перспективные направления. Кроме того, даже в перспективе реактор ИТЭР не может стать коммерчески успешным, его конструкция не предусматривает выработку электроэнергии, только тепло, то есть, потребляя высокачественную энергию, он будет превращать ее в энергию более низкого качества, тепловую.

Однако наиболее последовательную критику проекта дал Стивен Кривит (Steven B. Krivit), редактор популярного ресурса New Energy Times и автор нескольких книг по истории науки и LENR-проблематике. 17 июня 2018 он отправил открытое письмо Нику Холлоуэю, менеджеру британского центра по термоядерной энергии (The Culham Centre for Fusion Energy). В письме он попросил убрать с сайта из и из официальных документов ошибочную трактовку ранее проведенных экспериментов, которую используют в пропагандистских целях, рисуя радужные перспективы горячего термояда.

Прежде всего, С.Кривит указал на то, что уже долгие годы намеренно, и в разы, занижаются объемы энергии, потребляемые термоядерными реакторами, а они огромны.  Анализ прежних экспериментов показывает, что ни одна из сотни экспериментальных установок не вырабатывала хотя бы столько энергии, сколько потребляет, не говоря об избыточной. В частности, идет прямой обман: руководство проекта ИТЭР заявляет, что реактор  будет, как ожидается, вырабатывать 500 мегаватт тепловой энергии, но потреблять при этом он будет, как выяснил С.Кривит, вовсе не 50 мегаватт , а 300 мегаватт электричества, то есть в 6 раз больше. Таким образом, он будет вырабатывать (если еще будет), всего в 1,8 раза больше, чем потребляет. Если же учесть то, что он будет вырабатывать не электричество, а тепло, то и эту цифру нужно умножить на 0,4, то есть обычный кпд используемых генераторов. Таким образом, выигрыша в энергии вообще никогда не будет. Что касается коммерческих перспектив, то ИТЭР не способен окупиться даже в принципе.

Британский центр по ядерной энергии не ответил на критику, но все же изменил текст на сайте на более мягкую формулировку, и уже не утверждает, что ИТЭР будет производить в 10 раз больше энергии, чем потребляет.  Впрочем, это лишь одинокий пример успеха, причем более чем скромного – международный термоядерный проект продолжается, несмотря на усиливающийся скепсис наблюдателей из-за растущей дороговизны проекта ИТЭР, его громоздкости и все более сомнительных перспектив.

Но есть и еще одно обстоятельство, о котором сторонники "горячего термояда" предпочитают умалчивать. Это успехи, которые делает команда Андреа Росси, планирующая уже в начале следующего года выйти на рынок с семейством генераторов на LENR (холодном термояде) типа Ecat-QX и Ecat-SK.  Недавно А.Росси заявил об успешной работе на генератором нового типа, причем мегаваттной мощности.

Эти, а также иные обстоятельства, вызывают вопрос – суждено ли проекту ИТЭР вообще завершиться? Не суждено ли ему стать всего лишь одним из монструозных прожектов эпохи, уходящей в прошлое, вроде идеи "поворота сибирских рек"? Как гласит английская поговорка, Time will tell - время покажет.

А.Маклаков

29.05.2020 

https://congeniator.com/afera-veka-proekt-iter-kuda-plyvet-gorjachij-termojad/,
https://ria.ru/20151119/1322811722.html, https://lenta.ru/news/2020/07/28/iter/.

P.S. ITER - индийские проблемы: более 135 млн долларов долга
http://atominfo.ru/newsz02/a0272.htm.

Страниц: [1] 2 3 ... 10
Частичная или полная перепечатка материалов сайта Термояду.нет
возможна только с разрешения администрации

© Ялышев Ф.Х. | Powered by SMF 1.1.21 | SMF © 2006, Simple Machines
Rambler's Top100 Рейтинг@Mail.ru