Термояду.нет  
27 Февраль 2020, 19:53:03 *
Добро пожаловать, Гость. Пожалуйста, войдите или зарегистрируйтесь.

Войти
Новости: Большинство функций форума доступны только после регистрации
 
   Начало   Помощь Поиск Войти Регистрация  
Страниц: [1] 2 3 ... 10
 1 
 : 21 Февраль 2020, 20:39:19 
Автор Avtor - Последний ответ от Avtor
"Чистый" термояд приказал долго жить?..
Анатолий Красильников: гибридное будущее термояда

AtomInfo.Ru, ОПУБЛИКОВАНО 07.02.2020

На вопросы корреспондентов электронного издания AtomInfo.Ru ответил директор учреждения ГК "Росатом" "Проектный центр ИТЭР" (российское агентство международного проекта ИТЭР) Анатолий КРАСИЛЬНИКОВ.

Анатолий Витальевич, по какому пути после пуска опытного реактора ИТЭР пойдёт дальше термоядерная энергетика?

Все наши партнёры по проекту ИТЭР (а до недавнего времени и Российская Федерация) считают следующим шагом проект DEMO - демонстрационный термоядерный реактор.

В слово "демонстрационный" здесь вкладывается следующий смысл - должны быть показаны не просто сама реализуемость термоядерного горения и производство термоядерной мощности в виде 14 МэВ-ных нейтронов и 3,5 МэВ-ных альфа-частиц, но и инженерные решения для преобразования термоядерной энергии в электрическую. Для этой цели в DEMO предполагается наличие бланкетов.

У нас это направление (его можно называть энергетическим чистым термоядерным) никто не отменял - то есть, утверждать, что мы от него отказались, нельзя. Но наряду с ним мы активно рассматриваем в нашей стране так называемый гибридный реактор, объединяющий синтез и деление.

Термоядерная часть гибридного реактора используется как источник 14 МэВ-ных нейтронов. Далее нейтроны попадают во вторую часть реактора, которая содержит делящиеся или сырьевые материалы. Соответственно, во второй части или происходит реакция деления, вызванная "термоядерными" нейтронами, или идёт наработка топлива для атомной энергетики.

Сразу уточню, что задача по наработке топлива в гибридных системах имеет сегодня больший приоритет. Но мы не исключаем и задачу по производству энергии, а также рассматриваем варианты с загрузкой некоторых из бланкетов минорными актинидами для их дожигания.

Вот такая трёхзадачная концепция гибридного реактора принята у нас в стране, и проекты установок под эту концепцию сейчас прорабатываются, прорисовываются и просчитываются.

Один из наиболее известных вариантов гибридных реакторов - проект DEMO-TIN, который ведёт Курчатовский институт.

Что касается нас, то мы как частное учреждение госкорпорации "Росатом" собрали в 2019 году по поручению "Росатома" коллектив из семи наших крупнейших термоядерных и ядерных центров, и этот коллектив сейчас прорабатывает концептуальный проект реактора, который мы называем токамак с реакторными технологиями. Он должен стать термоядерным источником нейтронов для гибридного реактора.

На сегодняшний день мы закончили концептуальный проект на базе электромагнитной системы из низкотемпературного сверхпроводника. Мы отчитались перед госкорпорацией о выполненной работе. Далее, по поручению сообщества и по персональному поручению Евгения Павловича Велихова, в первое полугодие 2020 года мы должны сделать концепцию такой установки с использованием высокотемпературной сверхпроводимости.

Разница в следующем. То, что было сделано - это токамак с электромагнитной системой из низкотемпературных сверхпроводников, ниобий-три-олово и ниобий-титан. А сейчас поставлена задача нарисовать и просчитать машину на ReBCO, это вторая группа ВТСП.

В одной из статей мы видели интересную иллюстрацию различий между термоядерными проектами. Современный уровень - это Q порядка 1. В ИТЭРе собираются получить Q порядка 10, импульс 300-500 секунд. Для DEMO нужно говорить о стационарной работе и Q=30-50. Какие требования ставятся к термоядерным источникам в составе гибридных реакторов?

Привлекательность термоядерных источников нейтронов (ТИН) в том, что для них Q нужно иметь порядка единицы, а это достигнутый сегодня уровень.

Если быть совсем точным, то Q для ТИНов придётся немного повысить, где-то до 2-3. Но это достижимо, такая задача может быть решена на сегодняшнем уровне развития технологии, и мы знаем, как это сделать.

Когда речь заходит о DEMO, то многое меняется. Как достичь Q=30? Сейчас для таких значений соотношения Q материалов первой стенки нет. А вот для Q=2 материалы первой стенки есть, известно, как может быть изготовлена первая стенка, из каких конструкций, и так далее.

В этом и заключается основное отличие ТИН от DEMO. Последний - это всё-таки перспектива, причём достаточно далёкая. Строительство и пуск DEMO относят к рубежу 2050 года, имея в виду, что к тому времени случится развитие технологий. Первый ТИН для гибридного реактора мы можем начать создавать прямо сейчас и готовы, если будет решение, пустить его в течение семи лет...

                                                                .  .   .

В Курчатовском институте должен появиться токамак Т-15МД - модернизированный старый токамак или даже, как говорят, полностью новый.

Это абсолютно новый токамак со старым названием. Не знаю, по каким причинам ему не стали давать новый номер. Наверно, есть какие-то организационные причины для сохранения Т-15 в названии. Реально он к токамаку Т-15 никакого отношения не имеет.

Т-15 был сверхпроводящий, а эта машина медная, с медными катушками. Полностью отличаются геометрия и конфигурация плазмы.

Т-15МД - первая крупная российская установка с дивертором. Первая крупная, до неё были мелкие. Это первая крупная установка с вытянутостью плазмы в вертикальном направлении. По ряду своих характеристик она для России уникальна, и для специалистов она очень интересна.

Насколько я знаю, машина уже собрана. Идёт, я бы выразился так, фаза завершения монтажа установки. Надеюсь, что в этом году пойдёт наладка оборудования.

Машина находится в Курчатовском институте в Москве, поэтому на ней планируют работать с водородом и гелием, чтобы не производить радиации.

Неофициально новый токамак иногда называют ТИН-0, так как он станет первым шагом к созданию полноценных ТИНов. На нём будет отработан целый ряд технологий, которые мы хотим включить в проекты ТИНов.

Литиевая первая стенка - в программе экспериментов. Мощный нагрев в режиме с нейтральной инжекцией - в программе. Электронно-циклотронный нагрев - в программе. Поэтому Т-15МД действительно можно считать ТИН-0.

Мы возлагаем на Т-15МД очень большие надежды и рассчитываем решить с его помощью много физических и технологических проблем. Также мы надеемся, что Т-15МД станет полигоном для роста молодых учёных и инженеров, в которых сегодня большая потребность.

А почему такое название - Т-15МД?

Т-15 модифицированный. Но нельзя путать этот проект с проектом Т-15М, в котором планировали, не разбирая вакуумной камеры старой машины, вставить в камеру дополнительные обмотки и изменить конфигурацию плазмы.

Т-15МД - полностью новая машина. От старого Т-15 в ней остались только инжектора, которые заводят пучки атомов.

Раньше мы говорили с вами о национальной российской программе по термояду. Она принята или нет?

Она разработана и направлена в правительство. Насколько я знаю, она сейчас обсуждается на разных уровнях в правительстве и в администрации президента. Идёт обсуждение, идут комментарии, идут замечания, идёт устранение этих замечаний.

Были большие надежды на то, что в 2019 году этот процесс приведёт к какому-то результату и принятию программы, но этого не случилось.

Среди того, что запланировано в программе - создание токамака в Троицке, создание открытой ловушки (крупной установки на базе открытой ловушки в ИЯФ СО РАН в Новосибирске), а также развитие технологической базы по различным термоядерным технологиям в девяти научных центрах.

О каких сроках говорится в программе?

До 2024 года. Это короткая программа, и конечно, это для термояда не срок.У нас горизонт планирования более далёкий, потому что за оставшиеся четыре года серьёзную машину построить нельзя.

Хорошо, а когда может появиться первый гибридный реактор?

Если бы нам сегодня сказали "Вот вам лист бумаги и рисуйте то, что вы полагаете правильным", то я считаю, что первый гибридный реактор мог бы быть создан в нашей стране где-то к 2035 или 2036 году.

Есть такой английский термин showstopper. У гибридного реактора showstopper отсутствует. Не видно каких-либо технологических углов в этом проекте, которые были бы нереализуемы. Всё в нём можно сделать, исходя из сегодняшнего технологического знания.

Так что создание гибридного реактора - это только вопрос времени, проектирования, лицензирования, подбора оптимальных материалов.

Спасибо, Анатолий Витальевич, за интервью для электронного издания AtomInfo.Ru.  

http://atominfo.ru/newsz01/a0012.htm.

P.S. Идея гибридного реактора активно поддерживается и продвигается академиком Велиховым, недавно отметившим своё 85-летие: http://www.termoyadu.net/index.php?topic=6.msg3419#msg3419.
В средства массовой информации она (идея) стала внедряться лет десять тому назад: http://www.termoyadu.net/index.php?topic=684.msg2324#msg2324, https://polit.ru/article/2012/12/18/ps_hybrid_tokamak/. Идея гибридного реактора вполне себе реализуема, и, по мнению Красильникова, его создание - "это только вопрос времени, проектирования, лицензирования, подбора оптимальных материалов". Что же касается "чистого" термояда, то он наконец-то задвинут куда подальше после аж 70 лет бесполезных экспериментов! Ну, а нужность (востребованность) гибридного реактора и гибридного термояда в целом надо ещё обосновать. Напористости и авторитета уважаемого академика Велихова может и не хватить: http://www.termoyadu.net/index.php?topic=6.msg2768#msg2768.
                                                                                                                                   Ф.Ялышев

 2 
 : 20 Февраль 2020, 09:41:49 
Автор Avtor - Последний ответ от Avtor
Взрыв Бетельгейзе

«Сверхнепредсказуемая» сверхновая

Если верить некоторым источникам, Бетельгейзе, правое плечо небесного охотника, в любой момент может издать свой последний вздох в виде продолжительной и яркой сверхновой вспышки, оставив после себя пустое, невидимое невооруженным глазом место.

Это полностью изменит облик созвездия, так красиво оживляющие зимнее небо наших широт. Стоит ли ожидать это событие на нашем веку, и таит ли оно угрозу нашей планете?

Согласно ряду новостных лент, грандиозная сверхновая вспышка может загореться в любую секунду. Бетельгейзе повысит свою яркость в тысячи раз и будет несколько месяцев озарять небо, пока постепенно не погаснет и не оставит после себя разрастающуюся Крабовидную туманность с невидимой нейтронной звездой или черной дырой в её центре. Ничем серьёзным такая космическая катастрофа нам не грозит, если только один из полюсов взрывающейся звезды не будет направлен в сторону Земли. Поток гамма-лучей и заряженных частиц создаст некоторые проблемы с магнитной обстановкой и озоновым слоем планеты её атмосферы. Есть ли основания доверять такой информации, или это очередные страшилки СМИ?

Вероятность взрыва

Учёные не отрицают вероятность такого исхода. Однако, доподлинно неизвестно, взорвётся ли светило завтра, или через миллион лет, также неизвестно, взорвётся ли оно вообще. Несмотря на всю мощь современной астрономии, знания, касающиеся жизни звёзд, будто бы заново переживают младенческий период. Парадокс существования сверхмассивных гигантов, проблемы моделирования звездообразования в тесных системах ставят под сомнения сложившиеся научные парадигмы о жизни звезд. Открытие объектов, которые не вписывают в рамки существующих теорий, скорее создают больше вопросов, чем ответов.  Примером тому является даже всем известная Бетельгейзе, о которой, казалось бы, мы должны знать всё.

Неизвестная Бетельгейзе

Что нам известно о Бетельгейзе? Астроном-любитель, ткнув пальцем в красноватый огонёк, расскажет о её колоссальных размерах, переменности и других общедоступных фактов. И, чтобы возбудить воображение слушателя, добавит, что, если поместить её на место Солнца, то в недрах сверхгиганта оказались бы все планеты земной группы, а возможно даже и Юпитер. В этом он окажется прав, но как бы это ни было странно, профессиональный астроном будет оперировать едва ли ни таким же набором знаний о красном исполине. К примеру, до сих пор не установлено точного размера, массы и расстояния до Бетельгейзе.

Расстояния до звезды оценивается в таких грубых пределах, как 420-650 световых лет, некоторые источники дают и вовсе ужасающие границы от 180 до 1300 световых лет. Оценка величин массы и радиуса также не отличаются точностью и варьируются в пределах 13-17 солнечных масса и 950-1200 солнечных радиусов соответственно. Столь большие расхождения объясняется тем, что, в силу её удалённости, расстояния до Бетельгейзе невозможно измерить методом годичного параллакса. Кроме того, Бетельгейзе не является ни двойной звездой, ни входит в какое-либо тесное скопление. Такая особенность не позволяет корректно оценить массу и другие характеристики звезды, в том числе и абсолютную светимость.

Даже тот факт, что Бетельгейзе стала первой звездой (естественно, после Солнца), у которой удалось измерить угловой размер и получить детальное изображение её диска, по сути, не даёт нам никаких существенных данных касательно её параметров и природы.

Подобным образом обстоит дело со всем «звёздным» разделом астрономии. Учёным не только приходится разрабатывать новые модели, описывающие механизмы образования, эволюции и смерти звёзд, но и кардинальным образом перекраивать старые. К примеру, как объяснить существование, недавно открытых, звёзд с массой 200-250 солнечных, если верхний теоретический предел до недавних пор оценивался 150 солнечным массам? Чем объяснить природу гамма-всплесков? Не за горами прочие открытия, которые будут дальше ставить в тупик астрономов.

Быть ли взрыву?

Возвращаясь к Бетельгейзе, можно вынести своеобразным вердикт тем источникам, которые заявляют о неминуемом появлении на нашем небосклоне ярчайшего «прощального фейерверка». Астрономы дают ясно понять, что такое событие хоть и имеет вполне реальную вероятность произойти на наших глазах, да вероятность эта крайне мала, и оценить её не представляется возможным. Естественно, средства массовой информации, пытаясь оживить публику, переделывают на свой лад эти осторожные заявления.

Сверхновые взрывы относят к тем космическим событиям, которые наблюдаются де-факто. В науке не было случая, чтобы был зарегистрирован сверхновый взрыв, который предсказали и ждали заранее. По этой причине астрономы лишь косвенно могут судить о процессах, предшествующих взрыву.

Касаемо Бетельгейзе, учёные уверенно заявляют о том, что звезда находится в своей завершающей жизненной стадии, когда текущее процентное содержание углерода и последующих тяжелых элементов уже не может поддерживать стабильные термоядерные процессы. Согласно существующим моделям, с наибольшей вероятностью это приведёт к прекращению гидродинамического равновесия звезды, другими словами – к сверхновому взрыву.

Также существует возможность того, что Бетельгейзе завершит свою жизнь не столь ярко, а просто постепенно сбросит свою оболочку, превратившись в кислородно-неонный белый карлик...

https://spacegid.com/vzryiv-betelgeyze.html,
https://nplus1.ru/news/2020/02/15/betelgeise-faint,
http://www.termoyadu.net/index.php?topic=19.msg3422#msg3422.

P.S. Бетельгейзе миновала минимум яркости
https://nplus1.ru/news/2020/02/25/betelgeuse-dimming.

 3 
 : 17 Февраль 2020, 16:36:24 
Автор Avtor - Последний ответ от Avtor
На Бетельгейзе зафиксировали небывалые изменения

Астрономы обнаружили, что звезда Бетельгейзе, которая неожиданно потускнела в 2019 году, продолжает уменьшать свою яркость. Ученые называют изменения небывалыми за все годы наблюдения за звездой, сообщает издание Science Alert.

Исследователи провели наблюдения за звездой с помощью инструмента SPHERE, установленного на телескопе VLT (Very Large Telescope) Европейской южной обсерватории в Чили. SPHERE — это спектрополярометрический высококонтрастный инструмент для исследования экзопланет (Spectro-Polarimetric High-contrast Exoplanet REsearch instrument). Он позволяет фиксировать поляризованный инфракрасный свет, исходящий от формирующихся планет, вращающихся вокруг молодых звезд.

Бетельгейзе уменьшила свой блеск до 38 процентов своей обычной яркости. Подобные колебания обычны для звезды, которая расширяется и сжимается из-за изменения внутренней температуры. На поверхности находятся огромные конвективные ячейки, в размере достигающие 60 процентов диаметра самой звезды и создающие яркие и тусклые области. Возникновение такой ячейки объясняет, почему отдельные области на поверхности звезды яркие, а большая часть поверхности — тусклая.

Кроме того, звездный ветер выдувает большие количества пыли, которые заслоняют свет. С помощью инструмента VISIR (Imager and Spectrometer for mid-Infrared), также установленного на VLT, астрономам удалось обнаружить огромное облако вещества, испущенного Бетельгейзе. Этот инструмент позволяет блокировать яркий свет от звезды, имитируя солнечное затмение, что позволяет разглядеть гигантский ореол пыли вокруг Бетельгейзе...

https://lenta.ru/news/2020/02/17/dimming/,
https://nplus1.ru/news/2020/02/15/betelgeise-faint.

P.S. Звезда Бетельгейзе, вероятно, готова взорваться. Почему этому так рады ученые?
https://www.bbc.com/russian/news-51266049.
Поголубеет ли звезда перед этим, как, например, Эта Киля? Вот в чём вопрос!: http://www.termoyadu.net/index.php?topic=21.msg1840#msg1840. Пока же эти звезды схожи только тем, что у них наблюдаются огромные облака вещества, выброшенные перед предполагаемым взрывом. Но если Эта Киля выбрасывает вещество и раскручивается, то Бетельгейзе, выбрасывая содержимое, практически не увеличивает скорость вращения вокруг своей оси. Возможно, это ошибка наблюдений и со временем увеличение скорости вращения будет замечено.

P.P.S. Бетельгейзе миновала минимум яркости
https://nplus1.ru/news/2020/02/25/betelgeuse-dimming.

 4 
 : 11 Февраль 2020, 17:43:37 
Автор Avtor - Последний ответ от Avtor
Триумф Европейского космического агентства...
Состоялся запуск научного спутника Solar Orbiter

Опубликовано: 10.02.2020 08:12

Исследование Солнечной системы  

Сегодня утром в 7:03 мск на ракете-носителе «Атлас 5» из Космического центра им. Кеннеди во Флориде был запущен европейский научно-исследовательский космический аппарат Solar Orbiter, предназначенный для изучения Солнца. В 7:55 он успешно отделился от разгонного блока «Центавр» и спустя несколько минут вышел на связь с Землей.

Solar Orbiter – миссия Европейского космического агентства с широким участием НАСА. Она направлена на изучение Солнца с близкого расстояния и внутренней гелиосферы – наиболее близкой к нашей звезде области пространства. В перигелии космический аппарат будет пересекать орбиту Меркурия и приближаться к звезде на расстояние 43 млн км. Период его обращения на рабочей орбите составит 180 суток.

Solar Orbiter впервые в истории должен сделать подробные снимки полярных областей Солнца. Разрешение снимков позволит различить на поверхности Солнца детали размером от 180 км, а благодаря большой скорости вращения вокруг звезды Solar Orbiter сможет наблюдать за динамикой штормов в атмосфере звезды намного дольше, чем это возможно с Земли.

Цель миссии – ответить на вопрос о том, как Солнце формирует внутреннюю гелиосферу и воздействует на нее. Solar Orbiter будет изучать механизмы образования солнечного ветра и коронального магнитного поля; влияние процессов на Солнце на изменчивость гелиосферы; каким образом энергетические частицы, возникающие в результате солнечны вспышек, заполняют гелиосферу; а также он изучит солнечное динамо и общую связь между Солнцем и гелиосферой.

Solar Orbiter будет приближаться к Солнцу на расстояние около 1/4 астрономической единицы, и на такой дистанции воздействие солнечного света становится в 13 раз более интенсивным, чем на Земле. Поэтому на космическом аппарате были использованы термостойкие солнечные батареи и термостойкая остронаправленная антенна: в процессе их создания были использованы наработки по миссии для изучения Меркурия Bepi Colombo.

Сторона космического аппарата, которая будет обращена к Солнцу, защищена термоустойчивым покрытием. Для сброса избыточного тепла в космос он оборудован специальными радиаторами.

Масса полезной нагрузки Solar Orbiter составляет 180 кг. Первый комплект инструментов – это датчики для изучения среды вблизи аппарата. Они могут фиксировать магнитное поле, заряженные частицы, радио- и магнитные волны в солнечном ветре. Второй набор инструментов предназначен для изучения поверхности и атмосферы Солнца. Он включает коротковолновой УФ-спектрометр, камеру высокого разрешения, магнитометр высокого разрешения, коронографы ультрафиолетового и видимого света.

Перелет Solar Orbiter к Солнцу займет почти два года, в пути аппарат выполнит гравитационные маневры у Земли и Венеры. Спутник не оборудован полноценной маршевой двигательной установкой, а потому его траектория будет полностью зависеть от ракеты «Атлас 5» и последующих гравитационных маневров. Из-за этого центр управления миссией в ЕКА был вынужден просчитать более 500 различных траекторий в зависимости от дня и времени пуска – по 25 траекторий на каждый день для двухчасового пускового окна с интервалом 5 минут. Первоначально запуск был запланирован на 6 февраля, но его пришлось перенести из-за сложностей, возникших при подготовке ракеты-носителя.

http://kosmolenta.com/index.php/1535-2020-02-10-solar-orbiter.

P.S. Стоимость проекта составила около $1,5 млрд, а начало проектирования датируется 2000 годом.

Для справки. В настоящее время у России нет собственных спутников для изучения Солнца. Последний такой аппарат "Коронас-Фотон" перестал работать ещё в 2009 году. Изготовление двух космических аппаратов по программе "Интергелиозонд" для исследования Солнца обойдется более чем 20 миллиардов рублей. А сроки запуска пока вообще не определены, хотя ранее крайним сроком был обозначен 2026 год: https://ria.ru/20200214/1564683983.html, https://wiki2.org/ru/%D0%98%D0%BD%D1%82%D0%B5%D1%80%D0%B3%D0%B5%D0%BB%D0%B8%D0%BE%D0%B7%D0%BE%D0%BD%D0%B4.

Другие новости...
- Китайский луноход возобновил работу на обратной стороне Луны 
http://russian.cri.cn/news/homeList/380/20200219/423629.html,
https://www.gazeta.ru/science/news/2020/02/18/n_14051683.shtml.

 5 
 : 10 Февраль 2020, 09:29:43 
Автор Avtor - Последний ответ от Avtor
Станция Solar Orbiter отправилась к Солнцу

Автоматическая станция Solar Orbiter, созданная европейскими и американскими учёными, отправилась в путешествие к Солнцу. Зонд впервые даст ученым возможность детально исследовать полярные области нашей звезды. Трансляция пуска велась на сайте Европейского космического агенства.

Ракета-носитель Atlas V 411 со станцией стартовала в 04:03 по  Гринвичу с космодрома на мысе Канаверал, а через почти час после старта станция отделилась от разгонного блока «Центавр» и вышла на траекторию полета к Венере. В ближайшее время Solar Orbiter развернет свои солнечные панели, антенны и научные приборы.

Научная программа станции рассчитана на девять лет, ее основными задачами станут исследования корональных выбросов массы, формирования протуберанцев, определение напряженности магнитного поля в активных областях экваториального пояса Солнца, изучение короны звезды и механизмов ускорения солнечного ветра. Кроме того, аппарат сможет впервые в истории наблюдать за полярными регионами Солнца и получать их прямые полные изображения.

Для выполнения всех поставленных задач станция оснащена комплектом из десяти научных приборов, в которые входят коронограф, магнитометр, детекторы заряженных частиц, а также системы получения изображений. Все научные инструменты укрыты под многослойным теплозащитным щитом, внешняя поверхность которого будет нагреваться до 520 градусов Цельсия и принимать на себя потоки заряженных частиц.

Планируется, что полет до звезды займет два года, после чего станция совершит 22 оборота вокруг Солнца. При этом она будет менять наклонение своей эллиптической орбиты при помощи гравитационных маневров вблизи Венеры, что даст ей возможность увидеть полюса Солнца в 2025-2029 годах. В феврале 2021 года Solar Orbiter окажется на расстоянии 0,5 астрономических единиц от Солнца, а в октябре 2022 года — на расстоянии 0,3 астрономических единицы, что составляет около 60 солнечных радиусов. Зонд «Паркер», который в настоящее время исследует Солнце, сближается с ним на гораздо меньшее расстояние (от 10 до 35 радиусов Солнца), однако для Solar Orbiter такие сближения не нужны.

Ранее мы рассказывали о том, как зонд «Паркер»показал движение солнечного ветра, увидел неуловимый пылевой след астероида Фаэтон и помог понять ускорения частиц около Солнца, а также структуру короны.

Александр Войтюк

https://nplus1.ru/news/2020/02/10/Solar-Orbiter-in-space-now,
https://iz.ru/974256/2020-02-10/kosmicheskii-zond-solar-orbiter-startoval-k-solntcu.

Более подробно...
- Состоялся запуск научного спутника Solar Orbiter
http://kosmolenta.com/index.php/1535-2020-02-10-solar-orbiter.
- Миссия Solar Orbiter
https://elementy.ru/kartinka_dnya/1082/Missiya_Solar_Orbiter.

P.S. Аппарат начал присылать первые измерения и данные
https://v-kosmose.com/apparat-solar-orbiter-nachinaet-prisylat-pervye-izmereniya-i-dannye/.

 6 
 : 02 Февраль 2020, 15:21:34 
Автор Avtor - Последний ответ от Avtor
Главному термоядерщику - 85!

Освоение Арктики, создание прорывных методов изучения земной коры, развитие термоядерной энергетики, информационных технологий, лазеров — вот далеко не полный список задач и направлений, в которых прославился выдающийся физик, Герой Социалистического Труда, полный кавалер ордена «За заслуги перед Отечеством» и почетный президент НИЦ «Курчатовский институт» Евгений Павлович Велихов. 2 февраля ученому исполнилось 85 лет. «Известия» рассказывают о некоторых вехах его научной биографии.

Дальше жизни

Имя академика, почетного президента Национального исследовательского центра «Курчатовский институт» Евгения Велихова широко известно как в России, так и далеко за ее пределами. Для одних оно ассоциируется с импульсными МГД-генераторами для глубинного зондирования земной коры и созданием программ развития управляемого термоядерного синтеза, а для других — с деятельностью компании «Росшельф», занимающейся освоением морских нефтегазовых месторождений в Арктике, и платформой «Приразломная», созданной по его инициативе. Также прославленный академик стоял у истоков российской информатики, активно развивал лазерные технологии для самых разных применений.

Такая широта научных интересов, любознательности, энергии до сих пор поражает его коллег, друзей, учеников.

— Я хотел бы подчеркнуть, что есть некоторые люди, чья деятельность, можно сказать, имеет цивилизационные масштабы, — сказал президент НИЦ «Курчатовский институт» Михаил Ковальчук. — Они всегда имеют цель «дальше жизни» одного поколения, нацеленную в будущее. Таких людей очень мало, и Евгений Павлович — один из них.

Работающие с Велиховым ученые рассказывают о его уникальной способности первым оценить перспективы новых научных направлений, технологий, увлечь этим своих коллег, организовать целые проекты, в том числе и международного масштаба. Под его руководством, по инициативе были заложены основы для развития целого ряда новых направлений науки и техники, создания сложнейших технических систем и производств во многих областях, в том числе и для обороноспособности страны.

Знак из космоса

Интерес к науке, любознательность и упорство в достижении цели проявились у Евгения Велихова еще в детстве — по его словам, учась в 6-м классе, он нашел у подмосковной деревни Веледниково необычный камень, похожий на метеорит, и написал об этом в Академию наук СССР. Несмотря на то что космическое происхождение образца не подтвердилось, молодой человек не потерял веру в науку и активно занялся самообразованием в области теоретической физики.

Уже в 8-м классе он начал посещать лекции на физическом факультете МГУ и поступил туда после окончания школы в 1952-м. Спустя два года Евгений Велихов создал свой первый прибор — лазерный спектрометр, а в 1956-м был направлен на дипломную практику в теоретический сектор Института атомной энергии АН СССР (ныне — НИЦ «Курчатовский институт»), с которым оказалась связана вся его последующая научная судьба.

Первым направлением исследований ученого стала разработка сверхмощных импульсных МГД-генераторов, способных осуществлять прямое преобразование энергии движущегося тела (в данном случае — плазмы) в электричество. Впоследствии эти приборы, способные выдать огромное количество энергии за небольшой отрезок времени, начали использовать при изучении земной коры для сейсморазведки и поиска полезных ископаемых.

Увлеченность Евгения Велихова этой работой заставила его задержаться с защитой кандидатской диссертации. Зато в итоге ученый совет сразу присудил ему степень доктора физико-математических наук.

Международная известность

Дальнейшую научную карьеру физика можно назвать головокружительной — в 30 лет он становится доктором
наук, в 33 года — членом-корреспондентом АН СССР, в неполные 40 лет — академиком, а вскоре — самым молодым вице-президентом Академии наук СССР. В 1971-м Евгений Велихов становится заместителем директора Института атомной энергии им. И.В. Курчатова по научной работе. В Курчатовском институте Евгений Велихов почти за 50 лет работы прошел огромный путь: от аспиранта и младшего научного сотрудника до президента центра.

Не заставила себя ждать и международная известность — в 1973-м Велихова назначают научным руководителем исследований управляемого термоядерного синтеза (УТС) и доверяют ему представлять страну в МАГАТЭ по этому направлению. И эти исследования в скором времени удалось перевести на принципиально новый уровень.

— В 1975 году стало ясно, что в области термоядерного синтеза мы сильно отстаем от Соединенных Штатов, — вспоминает Евгений Велихов. — На XXV съезде КПСС (прошел в 1976 году. — «Известия») было принято решение о запуске советской программы по токамакам, а затем вышло постановление правительства, заложившее всю базу для создания отечественных термоядерных установок.

Два года спустя ученый возглавил физико-математическую секцию АН СССР и стал вице-президентом Академии наук, вплотную начав заниматься развитием компьютерной техники и микроэлектроники. В результате в АН СССР было образовано Отделение информационных технологий, которое и возглавил Евгений Павлович. Один из ярких примеров из 1980-х — тогда была создана система автоматизированного проектирования для автомобильного завода ЗИЛ.

— У себя в маленьком кабинете в Президиуме АН СССР он (Евгений Велихов. — «Известия») с 1981 года каждую среду начал проводить семинар. В нем участвовал очень узкий круг приглашенных слушателей, а в качестве докладчиков выступали специалисты, которые занимались искусственным интеллектом. Тогда это направление только-только «вылупилось из яйца», — рассказал «Известиям» Михаил Ковальчук. — И именно из данного семинара фактически выросла вся дальнейшая деятельность в области микроэлектроники.

Научная ответственность

Ученый не переставал заниматься и термоядерной энергетикой, которая стала его основным научным направлением на долгие годы. В сентябре 1985 года он сопровождал Михаила Горбачева в поездке в Париж, где глава государства выступил с инициативой международного сотрудничества по термоядерной программе.

— Это было одним из тех направлений в науке и технике, где Советский Союз мог работать на равных с любой страной мира, — отмечает Евгений Велихов. — При встрече с Франсуа Миттераном Горбачев высказал идею о совместной работе, а я ввел президента Франции в суть дела, рассказал о деталях.

Затем эта инициатива получила поддержку целого ряда других государств, что в итоге позволило объединить ученых ведущих стран в разработке проекта Международного экспериментального термоядерного реактора (ИТЭР) — принципиально нового источника энергии.

Именно Евгений Велихов был его инициатором и вдохновителем, ИТЭР стал главным проектом его жизни, в его основе — не просто создание новой технологии получения энергии, но фактически переход к новым принципам овладения энергией, процессам, происходящим на Солнце.

Большое внимание Евгений Велихов всегда уделял и подготовке нового поколения ученых. Для этого он организовал новую кафедру в МГУ и факультет проблем физики и энергетики в МФТИ. Затем он начал поддерживать движение молодежи в международном масштабе — десятки тысяч детей прошли через его программу «Достижения молодых».

В 2006 году Евгений Велихов был назначен секретарем вновь созданной Общественной палаты Российской Федерации, которой успешно руководил в течение девяти лет, а сегодня остается почетным секретарем ОП РФ.

Если перечислить все те позиции, посты, награды, которых был удостоен Евгений Павлович, этого хватило бы на десяток выдающихся людей, ученых. Один из самых ярких знаков признания заслуг этого выдающегося ученого: Евгений Велихов — полный кавалер ордена «За заслуги перед Отечеством».

Недавним указом президента Российской Федерации Евгению Велихову за особые заслуги перед государством и народом присвоено звание «Герой Труда РФ».

https://vestima.ru/nauka-i-tehnologii/nayka-videt-bydyshee-vydaushemysia-fiziky-evgeniu-velihovy-85.html,
https://iz.ru/970035/aleksandr-bulanov/nauka-videt-budushchee-vydaiushchemusia-fiziku-evgeniiu-velikhovu-85.

P.S. МОСКВА, 2 фев - РИА Новости. Президент РФ Владимир Путин поздравил почётного президента Курчатовского института, академика РАН Евгения Велихова с 85-летним юбилеем: https://ria.ru/20200202/1564159161.html.

P.P.S. Академик Велихов надеется, что Россия станет пионером в области искусственного топлива
(Интервью юбиляра "Вестям Недели")
https://vesti7.ru/article/1262838/episode/02-02-2020/.

ИМХО. Ничуть не умаляя заслуг уважаемого юбиляра, хочется отметить, что "термоядерная" часть его многогранной деятельности построена на ошибочном предположении о термоядерном синтезе. Термоядерного синтеза нет в Природе и он невозможен: http://www.termoyadu.net/index.php?topic=682.msg2297#msg2297. Однако эйфория, возникшая после создания водородной бомбы, не позволила тщательно взвесить первопричины возросшей мощности обычной атомной (урановой) бомбы, в заряд которой был включён дейтерид лития-6, а последовавшие за этим (успешным испытанием водородной бомбы) лабораторные исследования и полученные нейтроны однозначно трактовались как результат синтеза изотопов водорода: дейтерия и трития. В итоге, наша страна и другие государства были втянуты в своеобразную гонку по созданию термоядерных реакторов. За 70 лет ни в одной из стран и ни на одной установке не удалось осуществить управляемую термоядерную реакцию. Апофеозом же термоядерной истерии можно считать ИТЭР, за что уважаемому академику отдельное спасибо за экономию отечественных бюджетных средств. Не было бы ИТЭРа, то многомиллиардные расходы терпела бы наша страна в попытке построить термоядерный реактор, аналогичный ИТЭРу, самостоятельно: http://www.termoyadu.net/index.php?topic=684.msg2311#msg2311.

Как известно, проект ИТЭР стартовал в 1985 году с подачи академика Велихова, который убедил руководство СССР предложить лидерам США и Франции совместное строительство мега-токамака. Опыт был: в нашей стране был запущен токамак Т-15 со сверхпроводящей магнитной системой. Правда, Т-15 очень скоро "сдох", так и не выйдя на запланированные параметры: http://wiki.tpu.ru/wiki/%D0%A2%D0%BE%D0%BA%D0%B0%D0%BC%D0%B0%D0%BA_%D0%A2-15, http://www.termoyadu.net/index.php?topic=15.msg2532#msg2532, http://www.proza.ru/2012/06/27/295. Встала дилемма: или воплощать следующий токамак Т-20 (близкий по техническим параметрам к ИТЭРу) в СССР без всяких гарантий на успех, или "выкатить" его на международный уровень. Во втором случае убивались сразу два зайца: экономились бюджетные деньги, а при неудаче (как с Т-15) - все расходы и научно-техническая несостоятельность Проекта "размазывалась" на всех стран-участниц. Как видим, одержал верх второй вариант. Так что ещё раз спасибо дальновидному Е.П.Велихову!

И ещё. В последние годы уважаемый академик в родном "Курчатнике" активно продвигает строительство гибридного реактора: http://www.termoyadu.net/index.php?topic=6.msg3388#msg3388. В перспективе, благодаря гибридным реакторам, уважаемый академик вообще предполагает "полный отказ от использования урана и его добычи" и переход на торий: http://www.atomic-energy.ru/statements/2019/06/26/95718 (последний абзац). Означает ли это, что он осознал всю бесперспективность "чистого" термояда? Да, скорее всего, означает. "Гибрид" - это попытка хоть какого-то практического применения нейтронов, возникающих при работе ТОКАМАКов, и не более того!: http://www.termoyadu.net/index.php?topic=6.msg2768#msg2768, http://www.termoyadu.net/index.php?topic=6.msg2776#msg2776. В общем, гора под названием "термоядерная энергетика", курируемая уважаемым академиком, собралась породить мышь: гибридный реактор, да и то лишь через 15 лет, аккурат к 100-летию юбиляра.

                                                                                                          Ф.Х.Ялышев, изобретатель,
                                                                                        выпускник МВТУ им. Н.Э.Баумана, 1971г.

 7 
 : 01 Февраль 2020, 23:20:06 
Автор Avtor - Последний ответ от Avtor
Solar Orbiter отправится к Солнцу 7 февраля

Запуск зонда Solar Orbiter назначен на 7 февраля. Об этом говорится в совместном заявлении представителей NASA, ESA и ULA. Изначально, запуск должен был состояться 5 февраля — но его перенесли из-за неполадки, выявленной во время проверки верхней ступени ракеты Atlas V.

Solar Orbiter построен ESA при поддержке NASA. Зонд предназначен для изучения Солнца. После запуска автоматический разведчик совершит два гравитационных маневров в окрестностях Венеры и один в окрестностях нашей планеты. Благодаря им к 2022 году он выйдет на вытянутую орбиту, перигелий которой будет находиться на расстоянии 0.28 а. е. (42 млн км) от центра нашей звезды. На ней аппарат сможет выполнить детальные измерения характеристик внутренней части гелиосферы и зарождающегося солнечного ветра. В момент сближения с нашим светилом теплозащитный экран Solar Orbiter будет нагреваться до температуры порядка 500°C.

Важная особенность Solar Orbiter отличающая его от миссии Parker Solar Probe заключается в том, что во время гравитационных маневров аппарат также будет постепенно менять наклонение своей орбиты. К 2022 году оно составит 17°. Это позволит Solar Probe стать первым в истории космическим аппаратом, способным вести прямые наблюдения приполярных регионов Солнца и передавать на Землю их изображения. В случае дальнейшего продления миссии, инженеры рассчитывают провести новые гравитационные маневры, которые позволят увеличить наклонение орбиты до 33°.

Пусковое окно для запуска Solar Orbiter будет открыто с 5 по 24 февраля. Запуск в этот период позволит аппарату выполнить первый гравитационный маневр у Венеры 26 декабря 2020 года.

https://kiri2ll.livejournal.com/1402576.html.

P.S.
- Запуск перенесён на 9 февраля:
https://astronomy.ru/forum/index.php/topic,179907.msg4952124.html#msg4952124.
-- Миссия к Солнцу: аппарат Solar Orbiter готов к запуску
https://ru.euronews.com/2020/02/09/ru-space-solar-orbiter-set-for-launch.
--- Зонд Solar Orbiter отправится к Солнцу 10 февраля
https://news.ru/cosmos/zond-solar-orbiter-otpravitsya-k-solncu-10-fevralya/.
---- Запуск состоится 10 февраля 2020 года в 07:03 по МСК с пускового комплекса 41 космодрома на мысе Канаверал, Флорида, США: https://pikabu.ru/story/pryamaya_translyatsiya_zapuska_rn_atlas_v_s_missiey_solar_orbiter_7218751.

Другие новости...
- «Паркер» пережил четвертое сближение с Солнцем и побил собственные рекорды
https://nplus1.ru/news/2020/02/05/PSP-new-records.
-- Для справки. Следующее сближение с Солнцем состоится 7 июня 2020 года.

 8 
 : 01 Февраль 2020, 09:42:43 
Автор Avtor - Последний ответ от Avtor
Пропущенная статья...
Новосибирские физики экспериментально доказали перспективность открытых магнитных систем для управляемого термоядерного синтеза

Ученые Института ядерной физики им.Г.И.Будкера (ИЯФ) экспериментально подтвердили возможность создания установок управляемого термоядерного синтеза на основе открытой газодинамической ловушки, сообщил замдиректора ИЯФ Александр Иванов журналистам в пятницу.

    "Эксперименты позволили нам оптимизировать параметры положения стенки, магнитного поля так, что выяснилось: потери энергии из плазмы можно уменьшить до приемлемого уровня", - сказал он.

Он отметил, что основной проблемой систем удержания плазмы в открытых ловушках является то, что плазма, двигаясь вдоль линий магнитного поля, может соприкасаться со стенкой ловушки. Это приводит к большим потерям энергии, поскольку плазма имеет температуру масштаба миллионов, десятков миллионов и даже миллиардов градусов и при этом контактирует со стенкой, имеющей комнатную температуру.

В результате эксперимента выяснилось, что достаточно расположить стенку на расстоянии от области удержания плазмы, большем некоторого критического, которое и было установлено в эксперименте. По словам Иванова, это расстояние составляет несколько метров, а длина всего реактора в этом случае составит несколько десятков метров.

    "Эти работы очень важны для нашего большого будущего проекта - установки ГДМЛ (газодинамической многопробочной ловушки - ИФ), которую мы собираемся построить здесь в ИЯФ, которая будет иметь параметры, близкие к термоядерным. В плазме этой ловушки будут реально протекать реакции термоядерные. Будем надеяться, что эта ловушка послужит прототипом будущих энергетических станций на основе этого подхода", - сказал Иванов.

При этом, сказал он, основным параметром прототипов термоядерных установок является коэффициент усиления, то есть отношение энергии, выделяемой при термоядерном синтезе к вводимой в плазму энергии.

    "На этой установке мы должны будем продемонстрировать условия в плазме, которая соответствует коэффициенту усиления "единица". На данный момент это величина - несколько процентов", - сказал он.

Таким образом, предполагается, что термоядерный "протореактор" будет выдавать столько же энергии, сколько в него будет подаваться на входе.

Как сообщалось, ранее ученые ИЯФ предложили использовать газодинамическую ловушку для создания гибридных реакторов, использующих торий вместо урана, а также реакторов, перерабатывающих ядерные отходы АЭС.

Использовать для удержания плазмы открытые, то есть незамкнутые магнитные ловушки для плазмы при проведении управляемой термоядерной реакции предложил еще в 1950-е гг. основатель ИЯФ Гирш Будкер. Устройство получило название "пробкотрон Будкера", оно является альтернативой "токамаку", в котором в котором плазма удерживается электрическим полем в камере, имеющей форму тора.

http://www.atomic-energy.ru/news/2019/12/27/100453,
http://www.interfax-russia.ru/Siberia/news.asp?sec=1671&id=1093503.

ИМХО. В противостоянии новосибирцев и москвичей в создании гибридных реакторов априори победят москвичи-курчатовцы во главе с "Героем Труда" академиком Велиховым: https://ria.ru/20200130/1564072667.html, http://www.termoyadu.net/index.php?topic=6.msg3356#msg3356. К слову, 2 февраля 2020 года Е.П.Велихову исполняется 85 лет!: https://iz.ru/970035/aleksandr-bulanov/nauka-videt-budushchee-vydaiushchemusia-fiziku-evgeniiu-velikhovu-85, http://www.atomic-energy.ru/news/2020/01/31/101059.

 9 
 : 28 Январь 2020, 15:57:34 
Автор Avtor - Последний ответ от Avtor
На грани срыва? Возможно!..
Проект ExoMars-2020 испытывает большие трудности

МОСКВА, 28 янв - РИА Новости. Российско-европейский проект ExoMars по отправке летом 2020 года на Красную планету посадочной станции с марсоходом испытывает большие сложности, заявил заместитель директора Института космических исследований РАН Олег Кораблев.

"Конечно, большие трудности, осторожно говоря, с подготовкой этого космического аппарата (для ExoMars-2020 – ред.). Я надеюсь, что если решения будут необходимы, то они будут приняты как надо", - сказал он на Королевских чтениях по космонавтике, проходящих в Москве.

"Это совместный проект Роскосмоса и Европейского космического агентства. Очень сложная система кооперации. В общем-то, тут напланировали так, что, можно сказать, сами не рады, но, тем не менее, это колоссальный опыт совместной работы", - добавил учёный, институт которого разработал для посадочной станции и марсохода научные приборы.

Первоначально посадочную станцию с марсоходом планировалось запустить в 2018 году, но из-за технических проблем старт был отложен на 2020 год.

В 2019 году несколько подряд испытаний парашютной системы ExoMars-2020 закончились неудачей. После этого источник в ракетно-космической отрасли сообщил РИА Новости, что если проблемы с парашютами не удастся решить в ближайшее время, то запуск аппарата к Марсу придётся сдвинуть на следующее баллистическое окно в 2022 году.

https://ria.ru/20200128/1563966758.html.

В дополнение...
- "Роскосмос" показал отработку посадки на Марс российского модуля "Казачок"
https://ria.ru/20190403/1552362334.html.
-- Макет станции ExoMars-2020 разбился при испытании парашюта в Швеции
https://ria.ru/20190809/1557321673.html.

О проекте ExoMars на Астрофоруме:
https://astronomy.ru/forum/index.php/topic,65766.msg1691462.html#msg1691462.

Другие новости...
- Что ждет космонавтику в 2020 году?
http://kosmolenta.com/index.php/1521-2020-01-01-new-year.
- Новый законопроект о деятельности НАСА требует вернуть приоритет марсианской программе
http://kosmolenta.com/index.php/1528-2020-01-27-boeing-bill.
-- Высадку НАСА на Луну отложат на четыре года  
https://news.rambler.ru/scitech/43582834-vysadku-nasa-na-lunu-otlozhat-na-chetyre-goda/.
- «Роскосмос» возьмет с Луны грунт на полмиллиарда рублей
https://lenta.ru/news/2020/02/01/zemlya/.
-- В 1970-1976 годах советские станции "Луна-16", "Луна-20" и "Луна-24" доставили на Землю 326 граммов лунного грунта: https://ria.ru/20200201/1564132645.html.

А между тем...
- Китайский луноход "Юйту-2" преодолел 367 метров по поверхности обратной стороны Луны  
http://russian.news.cn/2020-02/04/c_138754656.htm.
-- Снимки обратной стороны Луны с лунохода Юйту-2
https://ribalych.ru/2020/02/02/snimki-yujtu/.

Ещё новости...
- Станция Solar Orbiter отправилась к Солнцу
https://nplus1.ru/news/2020/02/10/Solar-Orbiter-in-space-now,
https://iz.ru/974256/2020-02-10/kosmicheskii-zond-solar-orbiter-startoval-k-solntcu.

 10 
 : 25 Январь 2020, 20:04:42 
Автор Avtor - Последний ответ от Avtor
Как часы...
Зонд «Паркер» начал четвертое тесное сближение с Солнцем

Солнечный зонд «Паркер» начал четвертое тесное сближение с Солнцем. 29 января он пролетит на расстоянии около 18,6 миллиона километров от звезды, поставив новые рекорды по близости рукотворного аппарата к звезде и по скорости движения. Это позволит аппарату получить новые уникальные данные о внешних слоях Солнца, сообщается на сайте NASA.

Запуск зонда «Паркер» в космос состоялся 13 августа 2018 года. Его задачей является измерение основных характеристик солнечного ветра и внешних слоев звезды, а также изучение электромагнитных полей вблизи Солнца. От сильного нагрева и потоков заряженных частиц и излучения от звезды аппарат защищают система охлаждения и теплозащитный щит, под которым укрываются все научные приборы.

По плану процесс сближения со звездой продлится семь лет: с каждой новой орбитой (всего их 24) аппарат будет все ближе подходить к светилу. Зонд уже передал на Землю множество уникальных данных. В частности, «Паркер» показал движение солнечного ветра и помог понять ускорение частиц около Солнца, а также структуру короны.

Первые три раза зонд сближался с Солнцем почти на одно и тоже расстояние (около 24 миллионов километров), а 26 декабря 2019 года совершил гравитационный маневр у Венеры, чтобы увеличить свою скорость. 10 января аппарат совершил маневр коррекции траектории, а 23 января 2020 года зонд начал четвертое тесное сближение с Солнцем.

29 января он должен пролететь на расстоянии около 18,6 миллионов километров от звезды, тем самым поставив новые рекорды по близости рукотворного аппарата к звезде и по скорости движения. Собирать данные при помощи четырех комплектов научных приборов зонд будет в полностью автономном режиме. Лишь после того, как фаза сближения закончится, он выйдет на связь и начнет передачу данных на Землю.

Ранее мы рассказывали о том, как «Паркер» увидел неуловимый пылевой след астероида Фаэтон. Подробнее о целях этой уникальной миссии и загадках Солнца читайте в нашем материале «Навстречу солнечному ветру».

Александр Войтюк

https://nplus1.ru/news/2020/01/25/Parker-and-Sun.

Дополнительно о миссии здесь: http://www.termoyadu.net/index.php?topic=43.msg3326#msg3326, http://www.termoyadu.net/index.php?topic=33.msg3405#msg3405.

К слову, не только американцы вплотную взялись за изучение Солнца с помощью исследовательских зондов, но и европейцы. Так, уже "5 февраля состоится пуск американской ракеты «Атлас-5» с европейским спутником для исследования Солнца Solar Orbiter. Аппарат предназначен для исследований внешней атмосферы Солнца и солнечного ветра. Solar Orbiter впервые сделает снимки полюсов нашей звезды, но ждать этого придется долго. Путь спутника до рабочей орбиты потребует проведения гравитационных маневров около Венеры и Земли и займет 3,5 года.": http://kosmolenta.com/index.php/1521-2020-01-01-new-year.
Что касается нас, то в ближайших планах - это запуск в 2020 году наноспутников проекта "Ярило":
https://lenta.ru/news/2019/09/03/jarilo/.

P.S. Зонд NASA Parker Solar Probe успешно подошел к Солнцу на рекордно близкое расстояние — приблизительно 18,6 миллиона километров (в ходе предыдущих трех сближений он подходил к Солнцу примерно на 24 млн км): https://news.rambler.ru/scitech/43578880-parker-solar-probe-podoshel-na-rekordnoe-rasstoyanie-k-solntsu/, https://www.space.com/parker-solar-probe-perihelion-4.html.

P.P.S. Получены самые детальные снимки Солнца в истории. Снимки были сделаны наземным телескопом Daniel K. Inouye Solar Telescope (DKIST), установленным на Гавайях: https://lenta.ru/news/2020/01/30/sun/, https://nplus1.ru/news/2020/01/30/sun-in-details.

Страниц: [1] 2 3 ... 10
Частичная или полная перепечатка материалов сайта Термояду.нет
возможна только с разрешения администрации

© Ялышев Ф.Х. | Powered by SMF 1.1.21 | SMF © 2006, Simple Machines
Rambler's Top100 Рейтинг@Mail.ru