Термояду.нет  
27 Апрель 2024, 04:35:29 *
Добро пожаловать, Гость. Пожалуйста, войдите или зарегистрируйтесь.

Войти
Новости: Большинство функций форума доступны только после регистрации
 
   Начало   Помощь Поиск Войти Регистрация  
Страниц: 1 ... 8 9 [10]
 91 
 : 06 Август 2021, 18:57:21 
Автор Avtor - Последний ответ от Avtor
Термоядерная энергетика всё менее реальна...
Илон Маск прав: термояд не нужен. Будущее, которого у нас не будет

7/25/2021

До массовой термоядерной энергетики 20 лет — и всегда будет 20 лет. Это незатейливая шутка сама стала старой еще 20 лет назад. Общество расстраивается от того, что термояд все никак не могут вывести на промышленный уровень. И лишь Илон Маск считает, что термоядерный реактор вовсе не нужен. Внимательный анализ показывает, что он прав. Даже если все технические проблемы термоядерной энергетики чудесным образом разрешатся, у нее не будет шансов вытеснить конкурентов. Как так вышло, и что тогда спасет человечество от энергетического кризиса?

Сперва констатируем факт: на планете есть серьезный энергетический кризис. Углеродного топлива на ней достаточно, это правда. Но даже самое безопасное из них, природный газ, убивает по 4000 человек на каждый триллион выработанных киловатт-часов. Уголь, не говоря уже о биотопливе, убивает много больше — ведь при сгорании он дает больше микрометровых частиц (PM2,5). А именно они, проникая через легкие в кровь, убивают людей, вызывая тромбозы, инфаркты и инсульты, которые все мы принимаем за обычные «болезни, вызванные стрессом». В США от тепловой энергетики умирают десятки тысяч людей в год, а в мире речь идет как минимум о сотнях тысяч погибших ежегодно. Эта проблема давно и серьезно беспокоит ученых, советские академики еще в 1980-х считали отказ от тепловой энергетики неизбежным будущим — именно из этих, экологических соображений.

Современной публике эта ситуация известна мало, и вы не услышите о ней от политиков. Однако и публике, и политикам известны другие соображения, требующие отказа от углеродной энергетики – «потепленческие». По ним, глобальное потепление — катастрофа, и чтобы ее избежать, от углеродных топлив надо отказаться.

Мы уже не раз писали, что в действительности глобальное потепление снижает смертность. Например, в последнем исследовании по этой теме — на 15 тысяч человек в год только за последние 20 лет. Писали мы и о том, что антропогенные выбросы углерода привели к рекордному расцвету земной растительности и значительному росту урожаев. Но все это вовсе не означает, что с углеродным топливом не надо бороться. Тезисы советских академиков ничуть не устарели и сегодня: углеродное топливо убивает огромное количество людей каждый год, и в России — в том числе.

Так что же современная наука и технологии могут предложить, чтобы, наконец, покончить с этой невидимой войной, дающей сотни тысяч убитых ежегодно? Когда уже термоядерная энергетика выключит последнюю ТЭС? Увы, никогда.

Плюсы термояда неоспоримы…

Термоядерная энергетика с 1960-х — полвека! — обещает нам невиданные перспективы. Килограмм плутония при распаде дает 23,2 миллиона киловатт-часов (в пересчете на тепло), а килограмм дейтерия и трития в термоядерных реакторах — 93,7 миллиона киловатт-часов на килограмм. Разница – в четыре раза, что много. К тому же, воды на планете больше, чем ядерного топлива, а 1/6500 всей воды – суть дейтерий, термоядерное топливо.

Второе преимущество термоядерного реактора: при слиянии ядер атомов его топлива получается гелий и нейтрон. Нейтрон так или иначе из реактора далеко не улетит, а гелий безвреден. Какое-то количество радиоактивного трития в процессе утекает из зоны слияния ядер, но из реактора не выходит, да и радиоактивность от него, если честно, ничтожная. Полураспад трития — 12,3 года, заметно меньше, чем у типичных опасных изотопов, остающихся от распада атомов урана и плутония (это, например, нестабильные изотопы цезия). Если с отработавшим топливом АЭС ничего не делать, оно останется небезопасным тысячи лет. Отработавшее топливо термоядерного реактора будет безопасно уже через 150 лет.

Третье преимущество термоядерного реактора: в отличие от ядерного, в нем невозможна самоподдерживающаяся реакция. Без огромных усилий по поддержанию высокого давления и температуры реакция сразу остановится. Окружающее вещество реактора реакцию подпитать никак не может: там ядра атомов тяжелее дейтерия и трития. Их слияние просто не даст выделения энергии, которое могло бы расплавить активную зону (как на Фукусиме) или перегреть теплоноситель (как в Чернобыле). Явный плюс по безопасности. По крайней мере, так кажется на первый взгляд.

Увы, все эти преимущества, о которых нам рассказывали десятилетия, мягко говоря, не совсем точно описывают ситуацию. Не более, чем рассказы о грядущем переходе на «сплошную солнечную и ветровую энергетику».

…Или нет

Начнем с повышенной отдачи на единицу топлива. Бесспорно, дейтерий и тритий дают вчетверо больше энергии на килограмм топлива, но есть нюанс. Он в том, что никакого дефицита топлива нет и в ядерной энергетике — даже близко. Напомним: в России уже работает реактор, использующий плутоний. Это реактор-размножитель: в нем плутоний можно нарабатывать из обычного урана-238, получая на выходе больше делящегося топлива (плутония), чем на входе.

У одной только России уже добытого урана-238 более 700 тысяч тонн. Даже при скромном КПД в 34% из этого можно получить более 5,5 квадриллионов киловатт-часов. Это потребление всей планеты за более чем 200 лет. Надо понимать, что уже добытого урана-238 в других странах тоже довольно много. То есть, используя быстрые реакторы и не добывая никакой урановой руды вовсе, человечество сможет покрывать свои энергетические потребности многие столетия. Если же оно еще и руду будет добывать, то в ближайшие десятки тысяч лет о проблеме «нехватки топлива» следует сразу забыть. И это мы даже не затронули тот факт, что урана в морской воде много больше, чем в урановых рудах на суше.

Второе преимущество термояда — малый срок опасности его радиоактивных отходов — имеет похожую степень актуальности. Дело в том, что уже существующие быстрые реакторы типа БН-800 позволяют вовлечь в работу 95% всего отработавшего топлива. Планируемый к постройке в Сибири реактор на расплаве солей способен вовлечь в энергетический цикл еще 4%. Остается один-единственный процент — но он состоит из изотопов, которые уже через 500 лет будут иметь радиоактивность на уровне природной урановой руды.

У термояда этот срок равен 150 годам, что кажется преимуществом. Но дело в том, что для обеспечения энергией всей планеты на 500 лет вперед нужно порядка 10 миллионов тонн ядерного топлива. Один процент от этого числа — сто тысяч тонн. В силу высокой плотности ядерного топлива, это всего несколько тысяч кубометров. Если все их собрать в одном месте, то получится куб со стороной менее 20 метров. Речь идет о крайне малом объеме, который легко можно хранить прямо на открытых площадках работающих АЭС, как это, собственно, и делается с радиоактивными отходами сегодня, в прочных контейнерах.

А вот отходы термоядерной энергетики, хотя и меньшие по массе, но радикально менее плотные. Поэтому, несмотря на срок хранения в 150 лет, места на открытых площадках они займут примерно столько же, сколько и отходы ядерных реакторов.

Хорошо, но что с безопасностью? Кажется, здесь-то преимущество термояда неоспоримо: у него неконтролируемого разгона реактора быть не может?

И опять утверждение по существу верное… но опять есть нюанс. Он в том, что в современных атомных реакторах тоже не может быть никакого серьезного неконтролируемого разгона — просто в силу законов физики. Если в существующей АЭС начнется разгон реакции деления ядер, и само топливо, и теплоноситель рядом с ним нагреются. В обычном серийном реакторе тепло отводит вода — и при перегреве она закипит, резко потеряв в плотности. Но та же вода замедляет тепловые нейтроны, и если она становится менее плотной — замедление падает. Быстрые нейтроны захватываются ураном-235 намного хуже, чем медленные, — и реакция деления автоматически резко затормозится.

В быстром реакторе типа БН-800 ситуация иная. Замедлителя там нет, небольшую часть нейтронов захватывает натриевый теплоноситель. Но и он при нагреве резко теряет плотность и меняет тем самым нейтронные свойства внутри реактора. Тот опять-таки тормозится. Сам, просто в силу законов физики.

То есть, да, термоядерный реактор не может неконтролируемо разгоняться… но это не дает ему никаких преимуществ над современными АЭС, потому что они тоже не могут этого сделать.

А как же Чернобыль — почему там был неконтролируемый разгон и гибель людей? Все дело в том, что там был реактор совсем другого типа — немодернизированный РБМК. Строго говоря, сам по себе он тоже не мог неконтролируемо разогнаться. Но при проектировании допустили просчет, из-за которого замедление нейтронов в активной зоне при вводе аварийных стержней торможения росло, а не падало. Этот недостаток был известен проектировщикам, и они уведомили о нем АЭС с такими реакторами — но сделали это непонятным для обычных людей языком, отчего и случился Чернобыль.

Но у сегодняшних реакторов такая ситуация невозможна по чисто физическим причинам: они исходно спроектированы так, что нажатие педали «ядерного тормоза» не ведет к их разгону, как это было с РБМК.

Подведем итоги. Все три теоретических преимущества термоядерных реакторов — избыток топлива, решение проблемы радиоактивных отходов и безопасность — уже решены для атомных реакторов. Более того, как мы покажем ниже, это далеко не все.

Почему ядерные реакторы будут лучше термоядерных и через полвека?

Ключевая проблема термояда заключается в том, что он экономически не сможет конкурировать с АЭС — скорее всего, никогда.

Все дело в том, что для слияния ядер атомов им нужно преодолеть кулоновский барьер. В центре Солнца это делать просто: кругом десятки миллионов градусов и огромное давление. В термоядерном реакторе такого давления нет и нужно компенсировать это дополнительным нагревом — минимум до ста миллионов градусов. Жарче, чем в центре Солнца, и в тысячи раз жарче, чем на его поверхности.

Термоядерный реактор нагревает плазму с дейтерием и тритием до таких температур, удерживая ее сильнейшим магнитным полем. Сильнейшее оно потому, что если такую плазму не удержать в центре вакуумной камеры, то она повредит любой мыслимый материал — просто прожжет его.

Так вот: магнитная ловушка такого типа требует больших, сверхмощных магнитов, сделанных из сверхпроводящих материалов — и охлаждаемых жидким гелием. Установка такого удержания фантастически сложная и очень трудоемкая. В том числе и за счет нее экспериментальный термоядерный реактор ИТЭР стоит 25 миллиардов евро. Это цена шести гигаваттных реакторов Росатома — с годовой выработкой в полсотни миллиардов киловатт-часов. Что, напомним, равно одной двадцатой энергопотребления такой страны, как Россия.

А вот у ИТЭР мощность совсем не полдюжины гигаватт, а лишь 500 «тепловых» мегаватт. Причем реактор экспериментальный — он не может выдать ее постоянно, только во время коротких импульсов. Да и его энергозатраты в режиме нагрева могут превышать 700 мегаватт, что больше, чем возможная энергетическая отдача.

Представим себе на секунду, что все проблемы термоядерных реакторов решены, они держат плазму постоянно и не затрачивают на ее разогрев вообще нисколько энергии. Может быть, термояд станет конкурентоспособным хотя бы тогда?

Увы, нет. При существующих и перспективных типах реакторов это просто невозможно. Возьмем тот же ИТЭР: реактор там высотой 30 метров и диаметром 30 метров, мощность, напомним, всего 500 тепловых мегаватт в импульсе. Обычный атомный реактор БН-800 имеет высоту активной зоны меньше метра, а диаметр порядка 2,5 метра. При этом его постоянная (а не импульсная) тепловая мощность — более 2000 мегаватт. Кстати, будущие термоядерные реакторы будут еще крупнее ИТЭР. Ясно, что здание вокруг ИТЭР (и его преемников) нужно радикально крупнее и дороже, чем вокруг БН-800 (и это так и есть на практике).

Кроме этого в стоимость термоядерного реактора надо включить большую вакуумную камеру (в которой атомный реактор не нуждается). И огромный набор сверхпроводящих магнитов с охлажденным жидким гелием. Легко понять, что при их учете экономически сравнивать термоядерные и ядерные электростанции довольно сложно.

Отдельно оговоримся: все это остается верным при любых изменениях в ценах на дейтерий, тритий, уран или плутоний. Дело в том, что даже у АЭС доля цены топлива в итоговом киловатт-часе — всего 5%. Мыслимые изменения этой цены, таким образом, на стоимость электричества почти не влияют. Больше всего влияют капиталовложения при строительстве — и они у термоядерных реакторов намного выше. И останутся выше во всем обозримом будущем.

Причина — все в той же физике. Чтобы запустить атомный реактор, достаточно просто поднести друг к другу стержни с плутонием-239 или ураном-235. Нейтроны, которые их атомы испускают спонтанно, сами запустят цепную реакцию деления ядер. Чтобы запустить термоядерный — нужна многометровая вакуумная камера с сотней миллионов градусов в ее центре. Нет никаких путей развития, которые позволили бы такому сооружению иметь ту же цену, что небольшая (2х1 метр) емкость с натрием — безо всякого вакуума, и с температурами заведомо ниже одной тысячи градусов.

Основная часть стоимости и АЭС, и термоядерных электростанций — это капиталовложения. И у последних они всегда будут много выше, чем у АЭС. А это заведомо перекрывает любую экономию из-за меньшей массы потребляемого топлива.

Следует отдельно пояснить: несмотря на все сказанное, ИТЭР — замечательный научный проект, что-то типа Большого адронного коллайдера. Да, он дорог, но позволяет больше узнать о контроле над высокотемпературной плазмой, что рано или поздно может пригодиться и в совсем иных областях. Просто не стоит ждать от него будущего энергетического изобилия: за термоядерными реакторами нет такого греха, как низкие цены...

https://pulse.mail.ru/article/ilon-mask-prav-termoyad-ne-nuzhen-buduschee-kotorogo-u-nas-ne-budet-2157844836469413649-1439997417175552575/, https://naked-science.ru/article/nakedscience/noneedforfusion.

P.S. Илон Маск не "открыл Америку". То, что термояд не нужен, говорится давно, в том числе и на страницах данного форума: см. статью "Кому нужна термоядерная энергетика?": http://www.termoyadu.net/index.php?topic=6.msg2768#msg2768.
Просто инерция и желание попилить бюджетное бабло не дают возможности отказаться от этого тупикового (ошибочного!) направления в ядерной энергетике, давно создавшего себе ореол (иллюзию, миф!) переднего края науки: http://www.termoyadu.net/index.php?topic=682.msg2297#msg2297.

P.P.S. Впрочем, у термоядерщиков МИФИ другое мнение: https://mephi.ru/press/news/17910.
                                                                                                                                                               Ф.Ялышев

 92 
 : 06 Август 2021, 18:44:30 
Автор Avtor - Последний ответ от Avtor
В развитие темы...
Илон Маск прав: термояд не нужен. Будущее, которого у нас не будет

7/25/2021

До массовой термоядерной энергетики 20 лет — и всегда будет 20 лет. Это незатейливая шутка сама стала старой еще 20 лет назад. Общество расстраивается от того, что термояд все никак не могут вывести на промышленный уровень. И лишь Илон Маск считает, что термоядерный реактор вовсе не нужен. Внимательный анализ показывает, что он прав. Даже если все технические проблемы термоядерной энергетики чудесным образом разрешатся, у нее не будет шансов вытеснить конкурентов. Как так вышло, и что тогда спасет человечество от энергетического кризиса?

Сперва констатируем факт: на планете есть серьезный энергетический кризис. Углеродного топлива на ней достаточно, это правда. Но даже самое безопасное из них, природный газ, убивает по 4000 человек на каждый триллион выработанных киловатт-часов. Уголь, не говоря уже о биотопливе, убивает много больше — ведь при сгорании он дает больше микрометровых частиц (PM2,5). А именно они, проникая через легкие в кровь, убивают людей, вызывая тромбозы, инфаркты и инсульты, которые все мы принимаем за обычные «болезни, вызванные стрессом». В США от тепловой энергетики умирают десятки тысяч людей в год, а в мире речь идет как минимум о сотнях тысяч погибших ежегодно. Эта проблема давно и серьезно беспокоит ученых, советские академики еще в 1980-х считали отказ от тепловой энергетики неизбежным будущим — именно из этих, экологических соображений.

Современной публике эта ситуация известна мало, и вы не услышите о ней от политиков. Однако и публике, и политикам известны другие соображения, требующие отказа от углеродной энергетики – «потепленческие». По ним, глобальное потепление — катастрофа, и чтобы ее избежать, от углеродных топлив надо отказаться.

Мы уже не раз писали, что в действительности глобальное потепление снижает смертность. Например, в последнем исследовании по этой теме — на 15 тысяч человек в год только за последние 20 лет. Писали мы и о том, что антропогенные выбросы углерода привели к рекордному расцвету земной растительности и значительному росту урожаев. Но все это вовсе не означает, что с углеродным топливом не надо бороться. Тезисы советских академиков ничуть не устарели и сегодня: углеродное топливо убивает огромное количество людей каждый год, и в России — в том числе.

Так что же современная наука и технологии могут предложить, чтобы, наконец, покончить с этой невидимой войной, дающей сотни тысяч убитых ежегодно? Когда уже термоядерная энергетика выключит последнюю ТЭС? Увы, никогда.

Плюсы термояда неоспоримы…

Термоядерная энергетика с 1960-х — полвека! — обещает нам невиданные перспективы. Килограмм плутония при распаде дает 23,2 миллиона киловатт-часов (в пересчете на тепло), а килограмм дейтерия и трития в термоядерных реакторах — 93,7 миллиона киловатт-часов на килограмм. Разница – в четыре раза, что много. К тому же, воды на планете больше, чем ядерного топлива, а 1/6500 всей воды – суть дейтерий, термоядерное топливо.

Второе преимущество термоядерного реактора: при слиянии ядер атомов его топлива получается гелий и нейтрон. Нейтрон так или иначе из реактора далеко не улетит, а гелий безвреден. Какое-то количество радиоактивного трития в процессе утекает из зоны слияния ядер, но из реактора не выходит, да и радиоактивность от него, если честно, ничтожная. Полураспад трития — 12,3 года, заметно меньше, чем у типичных опасных изотопов, остающихся от распада атомов урана и плутония (это, например, нестабильные изотопы цезия). Если с отработавшим топливом АЭС ничего не делать, оно останется небезопасным тысячи лет. Отработавшее топливо термоядерного реактора будет безопасно уже через 150 лет.

Третье преимущество термоядерного реактора: в отличие от ядерного, в нем невозможна самоподдерживающаяся реакция. Без огромных усилий по поддержанию высокого давления и температуры реакция сразу остановится. Окружающее вещество реактора реакцию подпитать никак не может: там ядра атомов тяжелее дейтерия и трития. Их слияние просто не даст выделения энергии, которое могло бы расплавить активную зону (как на Фукусиме) или перегреть теплоноситель (как в Чернобыле). Явный плюс по безопасности. По крайней мере, так кажется на первый взгляд.

Увы, все эти преимущества, о которых нам рассказывали десятилетия, мягко говоря, не совсем точно описывают ситуацию. Не более, чем рассказы о грядущем переходе на «сплошную солнечную и ветровую энергетику».

…Или нет

Начнем с повышенной отдачи на единицу топлива. Бесспорно, дейтерий и тритий дают вчетверо больше энергии на килограмм топлива, но есть нюанс. Он в том, что никакого дефицита топлива нет и в ядерной энергетике — даже близко. Напомним: в России уже работает реактор, использующий плутоний. Это реактор-размножитель: в нем плутоний можно нарабатывать из обычного урана-238, получая на выходе больше делящегося топлива (плутония), чем на входе.

У одной только России уже добытого урана-238 более 700 тысяч тонн. Даже при скромном КПД в 34% из этого можно получить более 5,5 квадриллионов киловатт-часов. Это потребление всей планеты за более чем 200 лет. Надо понимать, что уже добытого урана-238 в других странах тоже довольно много. То есть, используя быстрые реакторы и не добывая никакой урановой руды вовсе, человечество сможет покрывать свои энергетические потребности многие столетия. Если же оно еще и руду будет добывать, то в ближайшие десятки тысяч лет о проблеме «нехватки топлива» следует сразу забыть. И это мы даже не затронули тот факт, что урана в морской воде много больше, чем в урановых рудах на суше.

Второе преимущество термояда — малый срок опасности его радиоактивных отходов — имеет похожую степень актуальности. Дело в том, что уже существующие быстрые реакторы типа БН-800 позволяют вовлечь в работу 95% всего отработавшего топлива. Планируемый к постройке в Сибири реактор на расплаве солей способен вовлечь в энергетический цикл еще 4%. Остается один-единственный процент — но он состоит из изотопов, которые уже через 500 лет будут иметь радиоактивность на уровне природной урановой руды.

У термояда этот срок равен 150 годам, что кажется преимуществом. Но дело в том, что для обеспечения энергией всей планеты на 500 лет вперед нужно порядка 10 миллионов тонн ядерного топлива. Один процент от этого числа — сто тысяч тонн. В силу высокой плотности ядерного топлива, это всего несколько тысяч кубометров. Если все их собрать в одном месте, то получится куб со стороной менее 20 метров. Речь идет о крайне малом объеме, который легко можно хранить прямо на открытых площадках работающих АЭС, как это, собственно, и делается с радиоактивными отходами сегодня, в прочных контейнерах.

А вот отходы термоядерной энергетики, хотя и меньшие по массе, но радикально менее плотные. Поэтому, несмотря на срок хранения в 150 лет, места на открытых площадках они займут примерно столько же, сколько и отходы ядерных реакторов.

Хорошо, но что с безопасностью? Кажется, здесь-то преимущество термояда неоспоримо: у него неконтролируемого разгона реактора быть не может?

И опять утверждение по существу верное… но опять есть нюанс. Он в том, что в современных атомных реакторах тоже не может быть никакого серьезного неконтролируемого разгона — просто в силу законов физики. Если в существующей АЭС начнется разгон реакции деления ядер, и само топливо, и теплоноситель рядом с ним нагреются. В обычном серийном реакторе тепло отводит вода — и при перегреве она закипит, резко потеряв в плотности. Но та же вода замедляет тепловые нейтроны, и если она становится менее плотной — замедление падает. Быстрые нейтроны захватываются ураном-235 намного хуже, чем медленные, — и реакция деления автоматически резко затормозится.

В быстром реакторе типа БН-800 ситуация иная. Замедлителя там нет, небольшую часть нейтронов захватывает натриевый теплоноситель. Но и он при нагреве резко теряет плотность и меняет тем самым нейтронные свойства внутри реактора. Тот опять-таки тормозится. Сам, просто в силу законов физики.

То есть, да, термоядерный реактор не может неконтролируемо разгоняться… но это не дает ему никаких преимуществ над современными АЭС, потому что они тоже не могут этого сделать.

А как же Чернобыль — почему там был неконтролируемый разгон и гибель людей? Все дело в том, что там был реактор совсем другого типа — немодернизированный РБМК. Строго говоря, сам по себе он тоже не мог неконтролируемо разогнаться. Но при проектировании допустили просчет, из-за которого замедление нейтронов в активной зоне при вводе аварийных стержней торможения росло, а не падало. Этот недостаток был известен проектировщикам, и они уведомили о нем АЭС с такими реакторами — но сделали это непонятным для обычных людей языком, отчего и случился Чернобыль.

Но у сегодняшних реакторов такая ситуация невозможна по чисто физическим причинам: они исходно спроектированы так, что нажатие педали «ядерного тормоза» не ведет к их разгону, как это было с РБМК.

Подведем итоги. Все три теоретических преимущества термоядерных реакторов — избыток топлива, решение проблемы радиоактивных отходов и безопасность — уже решены для атомных реакторов. Более того, как мы покажем ниже, это далеко не все.

Почему ядерные реакторы будут лучше термоядерных и через полвека?

Ключевая проблема термояда заключается в том, что он экономически не сможет конкурировать с АЭС — скорее всего, никогда.

Все дело в том, что для слияния ядер атомов им нужно преодолеть кулоновский барьер. В центре Солнца это делать просто: кругом десятки миллионов градусов и огромное давление. В термоядерном реакторе такого давления нет и нужно компенсировать это дополнительным нагревом — минимум до ста миллионов градусов. Жарче, чем в центре Солнца, и в тысячи раз жарче, чем на его поверхности.

Термоядерный реактор нагревает плазму с дейтерием и тритием до таких температур, удерживая ее сильнейшим магнитным полем. Сильнейшее оно потому, что если такую плазму не удержать в центре вакуумной камеры, то она повредит любой мыслимый материал — просто прожжет его.

Так вот: магнитная ловушка такого типа требует больших, сверхмощных магнитов, сделанных из сверхпроводящих материалов — и охлаждаемых жидким гелием. Установка такого удержания фантастически сложная и очень трудоемкая. В том числе и за счет нее экспериментальный термоядерный реактор ИТЭР стоит 25 миллиардов евро. Это цена шести гигаваттных реакторов Росатома — с годовой выработкой в полсотни миллиардов киловатт-часов. Что, напомним, равно одной двадцатой энергопотребления такой страны, как Россия.

А вот у ИТЭР мощность совсем не полдюжины гигаватт, а лишь 500 «тепловых» мегаватт. Причем реактор экспериментальный — он не может выдать ее постоянно, только во время коротких импульсов. Да и его энергозатраты в режиме нагрева могут превышать 700 мегаватт, что больше, чем возможная энергетическая отдача.

Представим себе на секунду, что все проблемы термоядерных реакторов решены, они держат плазму постоянно и не затрачивают на ее разогрев вообще нисколько энергии. Может быть, термояд станет конкурентоспособным хотя бы тогда?

Увы, нет. При существующих и перспективных типах реакторов это просто невозможно. Возьмем тот же ИТЭР: реактор там высотой 30 метров и диаметром 30 метров, мощность, напомним, всего 500 тепловых мегаватт в импульсе. Обычный атомный реактор БН-800 имеет высоту активной зоны меньше метра, а диаметр порядка 2,5 метра. При этом его постоянная (а не импульсная) тепловая мощность — более 2000 мегаватт. Кстати, будущие термоядерные реакторы будут еще крупнее ИТЭР. Ясно, что здание вокруг ИТЭР (и его преемников) нужно радикально крупнее и дороже, чем вокруг БН-800 (и это так и есть на практике).

Кроме этого в стоимость термоядерного реактора надо включить большую вакуумную камеру (в которой атомный реактор не нуждается). И огромный набор сверхпроводящих магнитов с охлажденным жидким гелием. Легко понять, что при их учете экономически сравнивать термоядерные и ядерные электростанции довольно сложно.

Отдельно оговоримся: все это остается верным при любых изменениях в ценах на дейтерий, тритий, уран или плутоний. Дело в том, что даже у АЭС доля цены топлива в итоговом киловатт-часе — всего 5%. Мыслимые изменения этой цены, таким образом, на стоимость электричества почти не влияют. Больше всего влияют капиталовложения при строительстве — и они у термоядерных реакторов намного выше. И останутся выше во всем обозримом будущем.

Причина — все в той же физике. Чтобы запустить атомный реактор, достаточно просто поднести друг к другу стержни с плутонием-239 или ураном-235. Нейтроны, которые их атомы испускают спонтанно, сами запустят цепную реакцию деления ядер. Чтобы запустить термоядерный — нужна многометровая вакуумная камера с сотней миллионов градусов в ее центре. Нет никаких путей развития, которые позволили бы такому сооружению иметь ту же цену, что небольшая (2х1 метр) емкость с натрием — безо всякого вакуума, и с температурами заведомо ниже одной тысячи градусов.

Основная часть стоимости и АЭС, и термоядерных электростанций — это капиталовложения. И у последних они всегда будут много выше, чем у АЭС. А это заведомо перекрывает любую экономию из-за меньшей массы потребляемого топлива.

Следует отдельно пояснить: несмотря на все сказанное, ИТЭР — замечательный научный проект, что-то типа Большого адронного коллайдера. Да, он дорог, но позволяет больше узнать о контроле над высокотемпературной плазмой, что рано или поздно может пригодиться и в совсем иных областях. Просто не стоит ждать от него будущего энергетического изобилия: за термоядерными реакторами нет такого греха, как низкие цены...

https://pulse.mail.ru/article/ilon-mask-prav-termoyad-ne-nuzhen-buduschee-kotorogo-u-nas-ne-budet-2157844836469413649-1439997417175552575/, https://naked-science.ru/article/nakedscience/noneedforfusion.

P.S. Цена ИТЭР варьируется: здесь она 25 млрд евро, на других ресурсах - в 2 раза больше: https://ru.xcv.wiki/wiki/ITER. Но дело даже не в цене. Удручает бесперспективность строящегося Царь-токамака. Он ни для чего не нужен, кроме как для последующего строительства демонстрационного реактора DEMO, который "должен иметь линейные размеры примерно на 15% больше, чем у ИТЭР, и плотность плазмы примерно на 30% больше, чем у ИТЭР": https://ru.xcv.wiki/wiki/DEMOnstration_Power_Plant. Поэтому чем замечателен этот Проект, остаётся загадкой. Впрочем, если даже только для распила бюджетных средств, то уже немало: государственные деньги куда-то девать надо: http://www.termoyadu.net/index.php?topic=684.msg2311#msg2311.
                                                                                                                                            Ф.Ялышев

 93 
 : 20 Июль 2021, 22:35:52 
Автор Avtor - Последний ответ от Avtor
К первой годовщине начала сборки ИТЭР (https://tass.ru/ekonomika/9063933, http://www.termoyadu.net/index.php?topic=7.msg3470#msg3470, https://strana-rosatom.ru/2020/07/31/nachalo-sborki-termoyadernogo-reaktor/)...
Зачем России французский токамак?

                                                                              .    .    .

Критика проекта ITER

По амбициозности проект ITER является самым значительным исследовательским проектом современности, по размаху строительства он превзойдёт Большой адронный коллайдер (CERN), а в случае успеха будет сопоставим с лунными программами.

Но на фоне всеобщего восторга с периферии дискуссий доносятся и робкие голоса скептиков. Робкие, скорее всего, потому, что критики рискуют быть зачисленными в ряды узколобых ретроградов, не способных пронзить мыслью всю глубину возможных достижений, заглянуть за горизонты современной науки из-за узости своего мышления. Тем не менее, рассмотрим характерные точки зрения.

Наиболее радикальные мнения сводятся к тому, что токамаки – тупиковый путь развития, что они не годятся для получения УТС по причине принципиальной неустойчивости плазмы, которая «выскальзывает» из магнитного поля, и рассеивается, теряя температуру и плотность. Главный аргумент: если в течение 60 лет нет осязаемого положительного результата, значит выбранный способ решения задачи – создание управляемого термоядерного реактора – пустая фантазия. Другие утверждают, что такой гигантский реактор как ITER вовсе не нужен, мол, есть менее масштабные, но не менее, если не более, перспективные термоядерные проекты. Например, американцы разрабатывают реактор, в котором магнитное поле создаёт электрический ток, проходящий непосредственно через плазму. Так что дорогостоящие катушки как на токамаках, по их мнению, вовсе не нужны. Такое решение существенно, якобы, удешевляет реактор. Впрочем, ещё в 50-х годах в Принстоне был предложен и иной способ магнитного удержания плазмы в устройстве, названном «стелларатор». В нем плазма удерживается магнитными полями, созданными только внешними проводниками, в отличие от токамака, где весомый вклад в создание конфигурации поля привносит ток, текущий по самой плазме.

Собственно, стремлением равноправно овладеть технологиями объясняется международная кооперация в проекте. Независимо от того, кто, чем и как занимался – разработкой или производством конкретной детали или конструкции – созданные технологии станут общим достоянием всех стран-участниц, которые смогут распоряжаться ими по своему усмотрению. К России никаких претензий, наша страна самая обязательная и дисциплинированная в этом проекте, а вот европейцы, мягко выражаясь, не все справляются со своими обязательствами в срок. Здравый юридический смысл вынуждает задаваться вопросами о справедливости равного доступа к плодам такого сотрудничества.

Самое распространённое обвинений в адрес разработчиков термоядерной энергетики – это то, что её практическое воплощение сравнимо с «достижением» горизонта – сколько ни двигайся в его сторону, он не приближается. На этот счёт любит шутить даже сам академик Велихов – одна из центральных фигур проекта ITER. В ходу даже такие анекдоты: физики твёрдо заверяют: «Практическое применение термоядерного синтеза начнется через тридцать лет, и этот срок точно никогда не изменится». Аналогичный анекдот приписывают академику Алфёрову, кстати, нобелевскому лауреату. Одного из ведущих ученых в области термоядерного синтеза спросили, когда он, наконец, намерен получить положительный результат. Тот ответил: «Через 10 лет». Прошло 10 лет, его вновь спросили: «Результата нет, а вы обещали через 10 лет. Когда же?» Он опять ответил, что через 10 лет. Спустя годы ему напомнили: «Вы же и 10 лет назад твердили то же самое». Тот, не смущаясь: «А я свое мнение не меняю». Остаётся надеяться, что эти анекдоты не станут реальностью проекта ITER. Шутки шутками, но первоначальная оценочная стоимость проекта возросла с 5 до 16 млрд. евро, а плановый первый запуск, связанный с получением первой плазмы, перенесён с 2010 на 2020 год. Отсюда слышны призывы выйти по примеру США из этого международного проекта и сконцентрироваться на своих, национальных. Ведь помимо международных, в России инициирован и реализуется целый ряд перспективных проектов, таких как, Т-10 и Т-15. Реактор Т-15 проходит стадию технологической модернизации и планируется к запуску в 2018 году. Бюджет данного проекта – около 2,5 млрд. рублей. Осуществляется российско-итальянский проект реактора IGNITOR, который будет намного меньше в размерах и по стоимости, чем ITER. Огромный реактор «Байкал» такого же типа планируется разместить на площадке токамака ТРИНИТИ в Троицке. Россия участвует в аналогичных проектах в Казахстане. В этой связи некоторые умы будоражит вопрос: Если в России в сфере термояда полным ходом и вполне успешно реализуются не только национальные проекты, но и с международным участием, зачем нашей стране понадобился ещё и Кадараш с такими проблемными партнёрами, неужели тех же результатов невозможно достичь у себя дома за меньшие деньги?

Противники технологии УТС

Не следует также сбрасывать со счетов, что восторг могут разделять далеко не все. Так, в настоящее время основой мировой экономики всё ещё являются углеводороды: нефть, газ, уголь. От цен на них зависят курсы валют, международные отношения и общий уровень жизни населения планеты. Вполне уместно допустить, что воротилы нефтегазового бизнеса, вряд ли откажутся от своих доходов и власти и будут с воодушевлением наблюдать, как весь мир переходит на альтернативные источники энергии. Случайно ли до сих пор не создаются серийные широкодоступные автомобили на водородном топливе? Случайно ли то и дело появляются сообщения, что нефть не только не заканчивается, а, напротив, её объёмы лишь увеличиваются на рынке энергетических ресурсов и её цена скоро сравняется со стоимостью питьевой воды? Термоядерный синтез, дескать, дело отдалённого будущего и предмет интереса лишь узкого круга специалистов, профессиональная деятельность которых связана с термоядерной энергетикой, и им просто требуется бесперебойное финансирование.

Те, кто считает проекты по УТС в виде токамаков ошибочным направлением, ссылаются на мнение самого И.В.Курчатова, который полагал, что только комбинация термоядерной и ядерной энергетики – так называемая гибридная энергетика – сулит осязаемый успех. Имеется проект гибридного реактора, т.е. сочетающего обе технологии – расщепление тяжелых ядер и синтез легких. Он не требует сверхвысоких температур и давления, эффективен в энергоотдаче, оставляет значительно меньше долгоживущих высокорадиоактивных отходов, требующих надежного захоронения на десятки и сотни тысяч лет. Кроме того, гибридный реактор мог бы работать не на уране, а на тории, который не только дешевле урана, но и его природных запасов в пять раз больше. И, наконец, гибридный реактор был бы значительно безопаснее в эксплуатации, чем существующие на сегодняшний день.

Встречается и критика безопасности будущих термоядерных электростанций, если таковые удастся, вообще, создать. Суть аргументов сводится к следующему. При слиянии дейтерия и трития на киловатт мощности образуется в несколько раз больше нейтронов, чем в обычном ядерном реакторе. Причем эти нейтроны будут гораздо более энергичными, порождая гораздо больше активированных изотопов в окружающей конструкции. Если не найти решений по утилизации этого нейтронного потока, то радиационный потенциал активации конструкций ТЯЭС проиграет АЭС.

https://proza.ru/2016/05/10/502.

P.S. Статья пятилетней давности, но актуальна до сих пор. Перекликается со статьёй семилетней давности: "Кому нужна термоядерная энергетика?": http://www.termoyadu.net/index.php?topic=6.msg2768#msg2768.

P.P.S. Выйти из Проекта на настоящее время никто из его участников не собирается. В своё время США намеревались, но сейчас успокоились и по полной вносят свой вклад в строительство ИТЭР: http://www.termoyadu.net/index.php?topic=7.msg3525#msg3525.

P.P.P.S. Что касается "гибрида", то наша страна одной из первых заявила о приоритете этого направления над "чистым" термоядом и полным ходом реализует его: http://www.termoyadu.net/index.php?topic=6.msg3424#msg3424, http://www.termoyadu.net/index.php?topic=6.msg3485#msg3485.

P.P.P.P.S. И последнее. Критика безопасности не то чтобы встречается, она, по сути, ключевая. Ионизирующее излучение конструкций реактора, вызванное потоком высокоэнергетических нейтронов при работе с D-T смесью, вкупе с необходимостью использовать тритий в соотношении 50 на 50 для достижения точки безубыточности сводят на "нет" мечты о практическом использовании термоядерных реакторов как таковых!: https://cont.ws/@izborskiy-club/449940, https://www.iter.org/multilingual/rf/2/59.

                                                                                                                           Ф.Х.Ялышев, изобретатель,
                                                                                                                 выпускник МВТУ им.Баумана, 1971 год.

 94 
 : 15 Июль 2021, 05:10:40 
Автор Avtor - Последний ответ от Avtor
Термоядерный синтез все реальнее: MAST, EAST и ITER, дейтерий-тритиевые эксперименты JET для ITER и другие достижения

6 Июн в 01:56

Термоядерные реакторы существуют десятки лет, но управляемая термоядерная реакция все это время оставалась недостижимой. Она постоянно находилась в ближайшем будущем, ученые говорили: «Через 10 лет, скорее всего, мы достигнем успеха». Но проходило десять лет, и ничего не менялось — по-прежнему публиковались научно-популярные статьи, где говорилось все о том же сроке в 10 лет.

Сейчас, насколько можно судить, многое изменилось — разработчики термоядерных установок достигли действительно заметных успехов. Речь идет как о новых реакторах, так и об уже существующих. В целом, вероятность того, что управляемый термоядерный синтез станет реальностью в течение ближайших нескольких лет, достаточно высокая. Давайте оценим успехи ученых последних лет и посмотрим, что там планируется.

Модернизированный сферический токамак MAST возобновил работу

В конце мая снова начал работу сферический токамак MAST (Mega Ampere Spherical Tokamak). Камера у этой установки не очень большая — диаметр 4 метра. Последние несколько месяцев систему модифицировали, включая оптимизацию систему охлаждения плазмы до ее сброса. Возможно, этот реактор послужит прототипом для небольших, но эффективных систем будущего.

К слову, сам токамак из Британии совсем не нов — его сборка стартовала в 1997 году, а работать он начал два года спустя. Проблемой стал небольшой размер камеры — из-за этого разогретая свыше сотни млн кельвинов плазма разрушала вольфрамовые плитки.

В 2013 году команда поняла, что установку нужно модернизировать. Правительство выделило деньги, около 55 млн фунтов, и началась реконструкция. Завершена она была лишь в октябре 2020 года, после чего последовал период тестирования. Токамак подвергся многочисленным проверкам, и лишь в 2021 году его приняли в эксплуатацию.

В итоге проблемы разрушения плиток удалось избежать. А плазма теперь при сбросе понижает температуру с сотни млн °C до всего 300 °C.

В прошлом году британские физики начали работу над еще одним проектом — токамаком STEP (Spherical Tokamak for Energy Production).

Проект ITER продвигается к завершению

В прошлом году в исследовательском центре Кадараш во Франции стартовало строительство (сборка!) экспериментальной термоядерной установки ITER. Это масштабный проект, в котором принимают участие специалисты из самых разных стран, включая ЕС, Индию, Китай, Южную Корею, Россию, США и Японию.

Реактор представляет собой цилиндр диаметром 28 метров, высотой 29 метров и весом 23 000 тонн. Размещается система в железобетонном объекте с длиной 120 метров, шириной 80 метров и высотой 80 метров.

Несмотря на некоторые проблемы, проект постепенно продвигается к завершению. Через четыре года разработчики планируют получить первую плазму. В течение десяти лет ученые будут проводить эксперименты, подводя работу к главному результату — получению управляемой термоядерной реакции.

Если все пройдет хорошо, то где-то в 2035 году появятся первые коммерческие реакторы DEMO.

Этим летом (т.е. 2021 г.) проводятся эксперименты с новой смесью для термоядерного реактора ITER. Речь идет о дейтерий-тритиевой смеси, которая будет использоваться в качестве основного «топлива» для реактора”. Испытания смеси будут проходить в Великобритании на площадке JET (Joint European Torus — Объединенный европейский токамак).

Этот реактор — работающая модель ITER с размером в 1/10 от размера полномасштабной установки. Если все пройдет хорошо с JET — значит, не должно быть проблем и с его «старшим братом». Эксперименты JET позволят увидеть, как будет вести себя плазма и какие сложности могут возникнуть. В ходе испытаний ученые используют не более 60 гр трития при температуре плазмы в 150 млн К — именно такая температура требуется для старта синтеза.

У JET весьма неплохие показатели — отношение затраченной на разогрев плазмы энергии к полученной энергии составляет 0,67. Для того, чтобы получить коммерческую систему, этот коэффициент, Q, должен быть больше единицы. Для того, чтобы отбить затраты и стать экономически выгодным проектом, Q должен быть равным или превышать 25. Авторы проекта ITER считают, что его Q будет не менее 10.

EAST ставит рекорды

Как уже писали на Хабре, китайским ученым удалось побить рекорд корейцев по удержанию сверхгорячей плазмы. Команда термоядерного реактора EAST смогла добиться невиданных доселе результатов — удержания плазмы с температурой 160 млн К в течение 20 секунд. Плазму с температурой в 120 млн К они удерживали 101 секунду. Это уже очень близко к порогу термоядерного синтеза — речь идет не о долях секунды, а о десятках секунд.

Для того, чтобы началась реакция термоядерного синтеза в установке, плазму температурой в 150 млн К нужно удерживать около 300-400 секунд.

EAST — тоже токамак, отличающийся от большинства похожих конструкций наличием полностью сверхпроводящей магнитной системы на основе ниобий-титановых проводников. При этом большой радиус камеры составляет всего 1,7 метра, то есть диаметр даже меньше, чем у британской установки, о которой говорилось выше — 3,4 метра вместо 4. И проблем с разрушением вольфрамовых плиток, насколько можно судить, у китайцев нет.

Стелларатор W7-X

Кроме токамаков, есть и термоядерные установки с иной конфигурацией. Например, стеллараторы. Форма магнитной катушки таких установок как бы повторяет конфигурацию нагретой плазмы, что позволяет не бороться с плазмой, а просто использовать ее особенности.

Установка Wendelstein 7-X (W7-X) — современный стелларатор, построенный по последнему слову термоядерных технологий. Конструкция стелларатора постепенно оптимизируется, в планах создателей — обеспечить работу системы вплоть до 30 минут, что, конечно, гораздо лучше любых рекордов токамаков.

Wendelstein 7-X (W7-X) предназначен, в первую очередь, быть proof of concept, показав жизнеспособность конструкции — получать энергию с его помощью не планируется. К сожалению, из-за пандемии эксперименты с системой отложены минимум на год. Работа возобновится не ранее следующего года.

Осторожный оптимизм

Несмотря на все эти успехи, все равно не стоит считать, что термояд уже у человечества в кармане. Предстоит решить еще очень много проблем, причем в будущем могут возникнуть новые.

Тем не менее, сейчас ученые достигли немалых успехов, изучением возможностей термоядерного синтеза заняты ученые многих стран. Это уже не парочка проектов, как пару десятков лет назад. При этом регулярно появляются новые системы — как токамаки, так и альтернативы.

Китайская установка вселяет уверенность в том, что цели, которые ставят перед собой ученые, будут решены в ближайшем будущем. При этом есть надежда и на ITER с его дейтерий-тритиевым «топливом».

Если W7-X покажет хорошие результаты — кто знает, может, именно стеллараторы вырвут победу, а токамаки останутся позади.

В любом случае, термоядерный синтез привлек внимание не только ученых, но и правительств крупнейших государств мира. И вряд ли это внимание, интерес, ослабнут. Скорее наоборот — будут лишь усиливаться.

https://se7en.ws/termoyadernyj-sintez-vse-realnee-mast-east-i-iter-dejterij-tritievye-eksperimenty-jet-dlya-iter-i-drugie-dostizheniya/, https://vk.com/@etorabotaet-termoyadernyi-sintez-vse-realnee.

В дополнение...
- Британские ученые добились снижения нагрева токамака MAST
https://strana-rosatom.ru/2021/07/08/britanskie-uchenye-dobilis-snizheniya/.
- Китайская команда Alpha Ring разрабатывает "искусственное солнце" на столе
http://lenr.seplm.ru/novosti/itaiskaya-komanda-alpha-ring-razrabatyvaet-iskusstvennoe-solntse-na-stole.

P.S. Ещё раз. Ключевым в работе термоядерного реактора является достижение точки безубыточности. А это возможно лишь при использовании дейтерий-тритиевой смеси. В своё время к этой точке приблизились (не достигли, а именно только приблизились!) американский TFTR и европейский JET. "Американец" из-за повышенной ионизации конструкций реактора почил в бозе, а "европеец" до сих пор не может очухаться и повторить хотя бы достижение 25-летней давности (1997 года). На этом фоне прорывным следует считать решимость наших термоядерщиков приспособить токамак с сильным магнитным полем (ТСП) для работы на D-T смеси. Произойдёт это, конечно, не завтра, а, возможно, лишь к 2030 году: http://www.termoyadu.net/index.php?topic=6.msg3528#msg3528, https://3dnews.ru/1044075.

P.P.S. Что касается токамака JET, то на сегодняшний день он вроде бы полностью восстановился, обзавёлся ИТЭРоподобной бериллиевой стенкой и этим летом проводит активную дейтерий-тритиевую кампанию: https://ru.abcdef.wiki/wiki/Joint_European_Torus, https://www.pvsm.ru/fizika/281856. Насколько успешно проходят эксперименты с D-T смесью пока неизвестно. Ясно лишь одно: для JET наступил момент, когда отступать уже некуда и придётся снова почувствовать пагубное воздействие ионизирующего излучения при работе с D-T смесью: https://rusevik.ru/tehnologii/68543-termoyadernyy-reaktor-jet-gotovitsya-dostich-tochki-bezubytochnosti.html, https://energo.jofo.me/1853305.html.
Судьбе JET на этом форуме уделяется значительное внимание, поэтому будет жаль, если давно анонсированная D-T кампания окажется для JET заключительной и его окончательно постигнет участь американского TFTR: http://www.termoyadu.net/index.php?topic=6.msg3339#msg3339, https://nn.by/?c=ar&i=268878&lang=ru, https://cont.ws/@izborskiy-club/449940.

P.P.P.S. И последнее. Не только ионизирующее излучение конструкций реактора, вызванное потоком высокоэнергетических нейтронов при работе с D-T смесью, но и необходимость использовать тритий в соотношении 50 на 50 для достижения точки безубыточности сводит на "нет" мечты о практическом использовании термоядерных реакторов как таковых!: https://www.iter.org/multilingual/rf/2/59, https://proza.ru/2016/05/10/502.

                                                                                                                           Ф.Х.Ялышев, изобретатель,
                                                                                                                 выпускник МВТУ им.Баумана, 1971 год.

 95 
 : 13 Июль 2021, 07:56:34 
Автор Avtor - Последний ответ от Avtor
К работе на дейтерий-тритиевой смеси готовят и наш токамак...
Во ВНИИНМ разработана базовая версия технологического тритиевого цикла для модернизации токамака в ГНЦ РФ ТРИНИТИ

ТВЭЛ, ОПУБЛИКОВАНО 12.07.2021

В рамках реализации федерального проекта "Разработка технологий управляемого термоядерного синтеза и инновационных плазменных технологий" комплексной программы "Развитие техники, технологий и научных исследований в области использования атомной энергии на период до 2024 года" (РТТН) отделением специальных неядерных материалов и изотопной продукции АО "ВНИИНМ" (входит в состав Топливной компании Росатома "ТВЭЛ") совместно со специалистами АО "ГНЦ РФ ТРИНИТИ" разработана базовая версия технологического тритиевого цикла для экспериментальной установки - модифицированного токамака с сильным полем (ТСП).

"Одной из критически важных систем инфраструктуры термоядерного реактора является технологический тритиевый цикл. Использование топливных смесей дейтерий-дейтерий в экспериментах приводит к наработке трития. Требуется очищать отработанную плазму от трития, чтобы обеспечить работоспособность экспериментальной установки модифицированного ТСП. Эту задачу реализует технологический тритиевый цикл", - рассказал об особенностях проекта начальник лаборатории отделения физики токамаков-реакторов АО "ГНЦ РФ ТРИНИТИ" Николай Родионов.

В рамках выполненной работы была разработана базовая технологическая схема тритиевого цикла с описанием основных стадий и используемого оборудования, а также проведён подтверждающий расчёт параметров процессов.

В состав цикла входят все стадии использования трития, начиная с хранения и заканчивая переработкой и концентрированием тритий-содержащих отходов. Также представлены системы по изотопному анализу газовых смесей, контролю за тритием и очистки воздуха рабочего помещения.

АО "ВНИИНМ" активно выполняет исследования и разработки в области термоядерной энергетики, однако работы по созданию тритиевого цикла не проводились с начала девяностых годов.

По всему миру насчитывается несколько десятков экспериментальных термоядерных установок. Однако только на установках JET (Великобритания) и TFTR (США) проводились испытания с применением дейтерий-тритиевой плазмы. Все остальные эксперименты проводились с использованием стабильных изотопов водорода.

Данный факт иллюстрирует всю сложность разработки и запуска токамака с применением трития.

На сегодняшний день только использование в качестве топлива дейтерий-тритиевой смеси позволяет рассчитывать на достижение режима термоядерного горения, необходимого для создания термоядерной энергетики будущего.

Кроме того, эксперименты с тритий-содержащей смесью изотопов водорода позволяют верифицировать технологические и экономические параметры будущих термоядерных установок. Поэтому работы по созданию тритиевого технологического цикла крайне важны для проводимых исследований в области термоядерного синтеза как в России, так и в мире.

"В ближайшее время планируется продолжение работ, которые будут состоять в разработке эскизного проекта, а к 2024 году полной проектной документации тритиевого комплекса. Это потребует постадийной проверки всех разрабатываемых узлов".

"Ввиду того, что на установке будет храниться и использоваться значительное по сравнению с исследовательскими объёмами количество трития, каждая стадия должна гарантировать безопасность эксплуатации. И уже к 2030 году все сделанные разработки должны воплотиться в промышленный тритиевый цикл реального токамака", - подчеркнул начальник отдела разработки технологии и оборудования для получения изотопов и изотопной продукции АО "ВНИИНМ" Александр Аникин.

http://atominfo.ru/newsz03/a0856.htm,
https://strana-rosatom.ru/2021/07/20/vo-vniinm-razrabotali-tehnologiju-ochi/.

В дополнение...
- На старт, внимание, термояд ТРИНИТИ
https://m.facebook.com/stranarosatom/posts/2502632116699079.
-- К 2030 году в Троицке планируют построить новый термоядерный реактор
https://strana-rosatom.ru/2021/02/08/k-2030-godu-v-troicke-planirujut-postroit/.

P.S. Повторюсь. Работа на D-T смеси сопровождается повышенным потоком высокоэнергетических нейтронов, приводящих к недопустимому уровню ионизации конструкций токамака и выходу его из строя, как в своё время американского токамака TFTR: https://cont.ws/@izborskiy-club/449940. Поэтому эксперимент с D-T плазмой на отечественном токамаке будет, скорее всего, постоянно откладываться, как и эксперименты на JET: https://www.iter.org/multilingual/rf/2/59, https://nn.by/?c=ar&i=268878&lang=ru, https://se7en.ws/termoyadernyj-sintez-vse-realnee-mast-east-i-iter-dejterij-tritievye-eksperimenty-jet-dlya-iter-i-drugie-dostizheniya/.

 96 
 : 10 Июль 2021, 14:35:11 
Автор Avtor - Последний ответ от Avtor
Ротация на российском сегменте МКС. Но не экипажа, а модулей...
«Роскосмос» запустит «Науку» и затопит «Пирс»

Запуск многофункционального лабораторного модуля «Наука» к российскому сегменту Международной космической станции (МКС) запланирован на 21 июля, сообщает «Роскосмос».

«Резервные даты — 22 и 23 июля», — отмечают в госкорпорации.

Согласно «Роскосмосу», на МКС «Наука» займет место модуля «Пирс», отстыковка которого и грузового корабля «Прогресс МС-16» намечена на 23 июля (при условии пуска 21 июля). «Вход в плотные слои атмосферы и дальнейшее затопление несгораемых элементов конструкции [грузового] корабля и модуля произойдет в несудоходном районе акватории Тихого океана спустя 4 часа после расстыковки», — говорится в сообщении госкорпорации.

Стыковка «Науки» с МКС намечена на 29 июля.

В апреле гендиректор «Роскосмоса» Дмитрий Рогозин заявил, что госкорпорация после выхода из проекта МКС допускает передачу НАСА российского сегмента орбитальной лаборатории. По словам гендиректора, российский сегмент станции изношен на 80 процентов, а его поддержание «потребует примерно тех же самых средств, что необходимы будут с 2025 года на развертывание отдельной национальной российской орбитальной станции».

https://lenta.ru/news/2021/07/08/iss/, https://3dnews.ru/1044227/moduldolgostroy-nauka-dlya-mks-nakonets-vodruzili-na-raketu-start-namechena-na-21-iyulya?from=related-grid&from-source=1040932.

P.S.
- «Роскосмос» запустил 20-тонную «Науку» к МКС
https://lenta.ru/news/2021/07/21/nauka/,
https://ria.ru/20210721/nauka-1742258257.html.
-- Модуль «Наука»: на пути к стыковке
https://kosmolenta.com/index.php/1782-2021-07-26-mlm-is-ok.  
--- Есть стыковка!: https://ria.ru/20210729/nauka-1743474087.html.
- «Наука» в составе МКС
https://kosmolenta.com/index.php/1783-2021-08-02-mlm-u.

Другие новости...
- Китай успешно испытал многоразовый суборбитальный корабль с горизонтальной посадкой
https://tass.ru/kosmos/11923319, https://www.aex.ru/news/2021/7/16/231961/,
https://ria.ru/20210717/kitay-1741643596.html.
-- Китай успешно запустил многоразовый суборбитальный корабль (возможно, аналог мини-шаттла X-37B Военно-воздушных сил США): https://lenta.ru/news/2021/07/17/china/, http://russian.news.cn/2021-07/17/c_1310065998.htm.
--- Китайский многоразовый суборбитальный корабль совершил экспериментальный полет
https://nplus1.ru/news/2021/07/19/china-suborbital-venicle.

Ещё новости...
- На Байконур отправили новый российский модуль для МКС
https://ria.ru/20210731/kosmos-1743783364.html.
-- Узловой модуль «Причал» прибыл на Байконур для подготовки к запуску на МКС
https://3dnews.ru/1046237/uzlovoy-modul-prichal-pribil-na-baykonur-dlya-podgotovki-k-zapusku-na-mks?from=related-grid&from-source=1046538.
- В РАН сообщили о переносе запуска миссии «Луна-25» на май 2022 года
https://www.gazeta.ru/science/news/2021/08/20/n_16408382.shtml.
-- Запуск «Луны-25» перенесли на май 2022 года
https://nplus1.ru/news/2021/08/20/luna-25-for-2022.
--- Отправка к Луне первой российской автоматической станции "Луна-25" планируется в конце мая 2022 года: https://ria.ru/20210828/luna-25-1747619645.html.
- Южная Корея запустит в 2022 году лунный орбитальный аппарат
https://tass.ru/kosmos/12250575.

И ещё...
- В США заявили о «российской угрозе» в космосе  
https://www.gazeta.ru/culture/news/2021/08/21/n_16412096.shtml.
-- Ранее угрозу усмотрели от китайцев:
http://www.termoyadu.net/index.php?topic=13.msg3514#msg3514.
- Европейское космическое агентство надеется на продление работы МКС. Сейчас страны-участницы проекта МКС имеют договоренности об эксплуатации станции до 2024 года включительно. Обсуждается вопрос продления ее работы до 2028-2030 года: https://ria.ru/20210830/mks-1747842321.html.
-- Тем временем МКС изнашивается: трещины обнаружены и в российском модуле «Заря»:
https://kosmolenta.com/index.php/1798-2021-08-30-zarya.
--- Однако развертывание новой российской орбитальной станции «Роскосмос» планирует начать только через 5-6 лет: https://lenta.ru/news/2021/09/02/rogozin_ross/.

 97 
 : 06 Июль 2021, 18:45:32 
Автор Avtor - Последний ответ от Avtor
Ученые зафиксировали мощнейшую с 2017 года вспышку на Солнце

06.07.2021

Вспышка максимального класса X, которая стала самой мощной с 2017 года, зафиксирована на Солнце. Об этом сообщили в Лаборатории рентгеновской астрономии Солнца ФИАН.

(Вспышка зарегистрирована в субботу, 3 июля, около 17:30 по московскому времени).

Согласно данным космических средств слежения, вспышка относилась к относительно редкому для таких событий импульсному типу, когда вспышечная энергия высвобождается почти мгновенно, в виде одного мощного взрыва. Продолжительность события составила около 16 минут.

Ученые отмечают, что всего за сутки было зафиксировано около десяти вспышек - три уровня M и несколько слабых вспышек класса C.

"Сам факт перехода Солнца из относительно спокойного в столь бурное состояние, да еще и за такое короткое время, стал неожиданным и не прогнозировался. Причиной происходящего должен быть быстрый рост избыточной энергии в солнечной атмосфере (это, собственно, причина всех солнечных вспышек), но какие именно события привели к такому росту, не понятно", - отмечают ученые.

По словам специалистов, возможность того, что тяжелые солнечные частицы или облака плазмы достигнут Земли, практически исключена. "Из ближних к Солнцу планет на этот раз пострадает (а скорее всего, уже пострадал) Меркурий, находящийся практически прямо напротив области солнечного взрыва. Также солнечный удар своим краем пройдется по Юпитеру", - говорится в сообщении.

https://rg.ru/2021/07/06/uchenye-zafiksirovali-moshchnejshuiu-s-2017-goda-vspyshku-na-solnce.html,
https://tesis.lebedev.ru/info/20210704.html.

 98 
 : 05 Июль 2021, 16:01:52 
Автор Avtor - Последний ответ от Avtor
Вклад США...
Самый мощный магнит в мире готов к отправке на ITER

16 июня 2021

На его изготовление ушло более десяти лет.

Компания General Atomics завершила создание центрального соленоида для International Thermonuclear Experimental Reactor (ITER) — крупнейшего в мире термоядерного реактора.

Центральный соленоид — самый большой из магнитов ITER — будет состоять из шести модулей. Это один из крупнейших вкладов США в строительство международного термоядерного реактора. В собранном виде он будет иметь высоту 18 метров и ширину 4,25 метра при весе в тысячу тонн.

Соленоид имеет магнитную силу, достаточную, чтобы поднять авианосец на высоту 2 метра. Создатели гарантируют, что он достигнет напряженности магнитного поля 13 Тесла, что примерно в 280 000 раз сильнее, чем магнитное поле Земли. Опорные конструкции для центрального соленоида должны будут выдерживать силы, в два раза превышающие тягу при взлете космического челнока.

Ранее в этом году General Atomics завершила финальные испытания первого модуля центрального соленоида. На этой неделе он будет загружен в специальный грузовик для перевозки грузов в Хьюстоне, а затем доставлен на океанское судно для отправки на юг Франции.

Центральный соленоид будет играть решающую роль в миссии ITER по превращению термоядерной энергии в практичный, безопасный и неисчерпаемый источник чистой, обильной и безуглеродной электроэнергии.
«Этот проект входит в число крупнейших, самых сложных и требовательных магнитных программ, когда-либо предпринимавшихся. Я говорю от лица всей команды, что это самый важный и значительный проект в нашей карьере. Мы все чувствовали ответственность за эту работу, которая может изменить мир», – Джон Смит, директор по проектированию и проектам General Atomics.

Модули центрального соленоида произвели в Центре магнитных технологий General Atomics в Калифорнии, недалеко от Сан-Диего. Пять дополнительных модулей центрального соленоида плюс один запасной находятся на разных стадиях изготовления. Модуль 2 будет отправлен во Францию в августе.

ITER является важнейшим международным проектом, который призван продемонстрировать возможность управляемого термоядерного синтеза в промышленном масштабе. Сам по себе реактор не станет термоядерной электростанцией, а послужит площадкой для беспрецедентного физического эксперимента.

Управляемый термоядерный синтез (УТС) отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжелых ядер получаются более легкие ядра. Процесс в УТС ровно противоположен этому — в результате синтеза возникают более тяжелые ядра и высвобождается гигантское количество энергии. Аналогичные процессы происходят на Солнце, поэтому проект ITER часто называют строительством Солнца на Земле.

Планы по строительству токамака ITER начали разрабатываться с 1985 года. Со временем ITER стал одним из самых амбициозных энергетических проектов, когда-либо предпринятых человечеством. Это совместное мероприятие, в котором участвуют тысячи ученых и инженеров из 35 стран. К настоящему моменту строительство ITER завершено на 75%.

https://nat-geo.ru/science/samyj-moshnyj-magnit-v-mire-gotov-k-otpravke-na-iter/,
https://nangs.org/news/renewables/inzhenery-iz-ssha-zavershili-sborku-samogo-krupnogo-magnita-termoyadernogo-reaktora-iter, http://atominfo.ru/newsz03/a0053.htm.

Другие новости...
- Комиссия по ядерному регулированию (NRC) США разрабатывает "технологически инклюзивную" нормативную базу для перспективных реакторов, в том числе термоядерных: http://atominfo.ru/newsz03/a0827.htm.

 99 
 : 04 Июль 2021, 08:32:09 
Автор Avtor - Последний ответ от Avtor
Ветровая энергетика в РФ набирает обороты...
«Росатом» получил разрешение на строительство Берестовской ВЭС

Получению разрешения предшествовало положительное заключение экспертизы проектной документации, выданное автономным учреждением «Государственная экспертиза в сфере строительства».

Станцию построит ­«ВетроОГК-2» (структура отраслевого интегратора «Новавинд») на территории Петровского городского округа в Ставропольском крае. ВЭС будет состоять из 24 установок мощностью 2,5 МВт каждая.

Ставропольский край — ​ключевой регион для «Новавинда». На сегодняшний день там уже введены в эксплуатацию две крупные станции: Кочубеевская (210 МВт) и Кармалиновская (60 МВт). Ведется строительство ветропарков общей мощностью порядка 180 МВт (помимо Берестовской сооружаются Медвеженская и Бондаревская). Всего по России до 2024 года «Новавинд» построит ветроэлектростанции общей мощностью 1,2 ГВт.

В начале июня этого года компания завершила монтаж ветроэнергетических установок на Марченковской ВЭС в Ростовской области. Там сейчас идут пусконаладочные работы: https://strana-rosatom.ru/2021/06/05/novavind-zavershil-montazh-vetroust/.

https://strana-rosatom.ru/2021/06/18/rosatom-postroit-berestovskuju-ves/.

P.S. Электроэнергия и мощность Марченковской ВЭС поступили на оптовый рынок
https://strana-rosatom.ru/2021/07/01/elektroenergiya-i-moshhnost-marchenkov/.

P.P.S. «Росатом» поставит Сбербанку чистую электроэнергию с ВЭС
https://strana-rosatom.ru/2021/07/27/rosatom-postavit-sberbanku-chistuju/.

P.P.P.S. Власти начали подготовку к будущему с низким спросом на углеводороды
https://www.rbc.ru/economics/04/08/2021/610997ea9a79478e2cba172a,
https://ria.ru/20210804/energiya-1744306477.html.

Для справки...
- Атомную энергетику включили в перечень «зеленых» видов деятельности (пока только в РФ!)
https://strana-rosatom.ru/2021/03/19/atomnuju-energetiku-vkljuchili-v-pereche/.
- В Южной Корее атомную энергетику не включили в список «зеленых»
https://eenergy.media/2021/05/25/v-yuzhnoj-koree-atomnuyu-energetiku-ne-vklyuchili-v-spisok-zelenyh/.
- Ядерной энергетике предложили присвоить статус «зелёной» в Европейском Союзе
https://3dnews.ru/1036860/yadernoy-energetike-predlogili-prisvoit-status-zelyonoy-v-evropeyskom-soyuze.
-- В Евросоюзе продолжаются дискуссии об экологичности атомной энергетики
https://eenergy.media/2021/08/02/v-evrosoyuze-prodolzhayutsya-diskussii-ob-ekologichnosti-atomnoj-energetiki/.

Другие новости...  
- Китайский прорыв в солнечной энергетике:
Китай планирует запустить на орбиту электростанцию
https://www.gazeta.ru/science/2021/06/28_a_13680272.shtml.
- Энергоблок №4 Белоярской АЭС возобновил производство электроэнергии
http://atominfo.ru/newsz03/a0818.htm.
- Китайская национальная ядерная корпорация ознакомилась с ходом изготовления оборудования для реактора CFR-600: http://atominfo.ru/newsz03/a0830.htm.
- Проект VTR (США) может столкнуться с трудностями с финансированием
http://atominfo.ru/newsz03/a0881.htm.
- Чтобы доля атомной энергии в России достигла 25%, понадобятся 13 быстрых реакторов
https://strana-rosatom.ru/2021/07/07/chtoby-dolya-atomnoj-energii-v-rossii-do/.

Ещё новости...
- Учёные КНР представили проект ториевого реактора на расплавах солей
http://atominfo.ru/newsz03/a0887.htm.
-- Китай продолжает программу ториевых ЖСР
http://atominfo.ru/newsz03/a0893.htm.
- Сенат США не выделил средств на VTR в предложениях по бюджету на 2022 финансовый год
http://atominfo.ru/newsz03/a0926.htm.
-- Предыстория: http://www.termoyadu.net/index.php?topic=10.msg3499#msg3499.

 100 
 : 22 Июнь 2021, 07:16:11 
Автор Avtor - Последний ответ от Avtor
Обозначен главный виновник возможного срыва графика строительства ИТЭР...
28-ое заседание Совета ИТЭР: поступательный прогресс несмотря на трудности, включая Covid-19

Проектный центр ИТЭР, ОПУБЛИКОВАНО 21.06.2021

На своём двадцать восьмом заседании 16-17 июня 2021 года Совет ИТЭР был созван посредством дистанционной видеоконференции для проведения оценки последних отчётов по реализации проекта и показателей производительности.

В рамках проекта был достигнут устойчивый прогресс как в отношении наилучших усилий участников по поставке компонентов, так и в отношении работ по монтажу и сборке на площадке сооружения.

Однако последствия некоторых технических проблем и продолжающейся пандемии тщательно отслеживаются и будут дополнительно оценены после должного рассмотрения всех возможных мер по смягчению последствий для предотвращения любых задержек, которые могут повлиять на график получения первой плазмы...

http://atominfo.ru/newsz03/a0790.htm.

P.S. Бог с ним, с графиком. Давно понятно, что он будет сдвинут. Удручает другое, а именно: безмерный бюджет ИТЭРа: "Первоначальный бюджет составлял около 6 миллиардов евро, но общая стоимость строительства и эксплуатации прогнозируется в размере от 18 до 22 миллиардов евро; по другим оценкам, общая стоимость составляет от 45 до 65 миллиардов долларов": https://ru.xcv.wiki/wiki/ITER.
 
P.P.S. Удручает и бесперспективность строящегося Царь-токамака. Он ни для чего не нужен, кроме как для последующего строительства демонстрационного реактора DEMO, который "должен иметь линейные размеры примерно на 15% больше, чем у ИТЭР, и плотность плазмы примерно на 30% больше, чем у ИТЭР":
https://ru.xcv.wiki/wiki/DEMOnstration_Power_Plant.
О десятках миллиардов долларов и евро, которые для этого понадобятся, даже говорить не хочется.

P.P.P.S. И повторюсь. Термоядерная энергетика, которую обещают человечеству после строительства и запуска сначала ИТЭР, а затем и DEMO, никогда не будет экономически выгодна. Этот вывод следует из достаточно простых рассуждений и расчётов. Цитата: "... стоимость термоядерного реактора может быть такова, что произведённая им энергия при современном технологическом уровне может оказаться в десятки раз дороже обычного. Например, уровень нейтронного облучения стенок ТОКАМАКа всего за 5 лет работы в штатном режиме превращает их в решето, а менять самые дорогие элементы во всём реакторе каждые 5 лет - экономически невыгодно. Реактор попросту никогда не окупится": http://www.termoyadu.net/index.php?topic=6.msg3485#msg3485.
Вон, даже ещё недостроенный ИТЭР уже рассматривается "как прекрасный пример недостатков в добыче энергии из термоядерного синтеза": http://www.termoyadu.net/index.php?topic=7.msg3241#msg3241, http://www.termoyadu.net/index.php?topic=7.msg3242#msg3242.
Именно поэтому в нашей стране взят курс на гибридный термояд, имеющий, правда, свои подводные камни и, самое главное, своих конкурентов в виде успешно действующих и перспективных реакторов на быстрых нейтронах: http://www.termoyadu.net/index.php?topic=6.msg3424#msg3424, http://www.termoyadu.net/index.php?topic=6.msg2768#msg2768, https://strana-rosatom.ru/2021/06/28/kak-brest-izmenit-budushhee-ljudej/.

                                                                                                     Ф.Х.Ялышев, изобретатель,
                                                                                        выпускник МВТУ им. Н.Э.Баумана, 1971г.

Страниц: 1 ... 8 9 [10]
Частичная или полная перепечатка материалов сайта Термояду.нет
возможна только с разрешения администрации

© Ялышев Ф.Х. | Powered by SMF 1.1.21 | SMF © 2015, Simple Machines
Rambler's Top100 Рейтинг@Mail.ru