Термояду.нет  
19 Апрель 2021, 13:23:48 *
Добро пожаловать, Гость. Пожалуйста, войдите или зарегистрируйтесь.

Войти
Новости: Большинство функций форума доступны только после регистрации
 
   Начало   Помощь Поиск Войти Регистрация  
Страниц: 1 ... 5 6 [7] 8 9 ... 13
  Печать  
Автор Тема: Предмет обсуждения  (Прочитано 233406 раз)
Avtor
Администратор
Ветеран
*****
Сообщений: 2076


Просмотр профиля
« Ответ #90 : 01 Ноябрь 2015, 18:49:31 »

Wendelstein 7-X близок к первой плазме

Одной из важных альтернатив токамакам всегда являлись стеллаторы — тороидальные магнитные ловушки со сложной конфигурацией магнитного поля, обеспечивающего удержание плазмы без возбуждения в ней тороидального тока. К их плюсам можно отнести возможность длительной работы, а к минусам — еще более сложную конструкцию, чем у токамаков и большие теплопотери. Новейшей и самой высокопараметрической установкой среди стеллаторов является Wendelstein 7-X , сборка которого была закончена в 2014 году в Институте Физики Плазмы (Max Planck Institute for Plasma Physics) в немецком городе Грейсфальд.

С марта месяца начался постадийный запуск систем — сначала вакуумной, потом криогенной, и с мая месяца — системы сверхпроводящих магнитов. Магниты тренировали увеличивающимся током, тестировали на сброс сверхпроводящего состояния (квенч) и утечки. Максимальный ток в магниты составляет 12,8 кА (сравните с 68 кА ИТЭР).

И вот 6 июля выдачей максимального проектного тока на весь набор из 70 катушек успешно открыта дорога к тонкой настройке магнитной системы, испытаниям систем нагрева и первым плазменным запускам установки, которые по плану пройдут в октябре 2015 года.

P.S. Параметры установки:

большой радиус:                    5.5 м
малый радиус:                        0.53 м
плазменный объем:               30 м^3
количество портов:                 253(!)
поле на оси :                           < 3T
энергия магнитов:                  600 МДж
греющая мощность:              15 - 30 МВт
длительность «горения»:      30 минут
высота установки:                  4.5 м
диаметр установки:               16 м
обшая масса:                         725 тонн
холодная масса:                    425 тонн  

http://tnenergy.livejournal.com/13468.html.

Для справки. Выше в этой теме сообщение об упомянутом стеллаторе (стеллараторе!) уже было:
http://www.termoyadu.net/index.php?topic=6.msg2706#msg2706.
Ждём-с!
Wendelstein 7-x stellarator - реактор термоядерного синтеза с необычной конфигурацией магнитных полей

29 октября 2015, 13:01
Рубрика: В мире
Метки: АЛЬТЕРНАТИВНАЯ ЭНЕРГЕТИКА

В недрах большого исследовательского комплекса, расположенного в Грифсвальде на северо-востоке Германии, находится новый реактор термоядерного синтеза, имеющий достаточно нетрадиционную и необычную конструкцию. Этот реактор, имеющий название Wendelstein 7-x fusion stellarator, проходит последние этапы испытаний, прежде чем на его магниты и другие компоненты будет подана полная мощность и будет проведена первая попытка его включения. Строительство этого реактора заняло порядка 15 лет, в течение которых ученым и инженерам удалось создать чрезвычайно эффективную магнитную систему, способную удерживать сверхвысокотемпературную плазму непрерывно в течение 30 минут. И в случае успешного запуска работы реактора он послужит испытательным стендом, позволяющим выяснить все тонкости и особенности поддержания реакции термоядерного синтеза в непрерывном цикле, что требуется для технологий производства электроэнергии.

Реактор Wendelstein 7-x stellarator был построен специалистами Института физики плазмы Макса Планка (Max Planck Institute for Plasma Physics, IPP), а все его основные и критичные узлы и компоненты были рассчитаны при помощи суперкомпьютера. Wendelstein 7-x stellarator является первым полномасштабным оптимизированным стелларатор-реактором, который создает в своей камере неоднородное магнитное поле, имеющее области с завихрениями и напоминающее перекрученную несколько раз ленту Мебиуса. Такое магнитное поле создает среду, плазма в которой, согласно расчетам, будет обладать большей стабильностью, а реакция станет более управляемой за этот счет.

Изначально конструкция стелларатор-реактора была разработана в 1951 году Лайманом Спитцером (Lyman Spitzer), ученым из Принстонского университета. Однако, в то время создание реактора такого типа было невозможным из-за ограниченного количества доступных людям материалов. Поэтому реакторы типа токамак, имеющие более простую и более технологичную конструкцию, были выбраны и использованы в качестве стендов для исследований в области ядерного синтеза.

Тем не менее, попытки создания стелларатор-реакторов, таких как Wendelstein 7-AS (Advanced Stellarator), были проведены учеными и инженерами различных стран. И лишь в последнее время, благодаря появлению суперкомпьютеров, обладающих мощностью, достаточной для проведения сложнейших расчетов, стала возможна разработка технологий, позволяющих удерживать и контролировать сверхвысокотемпературную плазму в магнитном поле сложной конфигурации.

Конструкция стелларатор-реактора создает среду, в которой плазма обладает высокой стабильностью. Ключом к этому является технология, которая позволяет избежать возникновения токов внутри плазменного шнура, потоков свободных электроном и ионов, которые создают свои собственные магнитные поля, что часто приводит разрушению магнитного поля и потере плазмой температуры в токамак-реакторах. В стелларатор-реакторе используется ряд электромагнитных катушек, которые создают закрученное магнитное поле, удерживающее плазму в центре камеры реактора. За счет некоторых физических эффектов, возникающих при взаимодействии плазмы и такого магнитного поля, плазменный шнур постоянно отталкивается в сторону центра камеры, а основным эффектором этого являются магнитные поля, изменяющие свою полярность на противоположную несколько раз по всей длине плазменного шнура.

Преимущества стелларатор-реакторов по отношению к токамакам выливаются в высокую стоимость строительства таких реакторов. Кроме этого, завихрения магнитных полей, возникающих в местах "перекручивания" основного магнитного поля, являются потенциальными местами утечки, через которые множество частиц топлива могут покинуть пределы плазменного шнура и утеряны. Поэтому в конструкции реактора используется множество дополнительных катушек, поле которых "затыкает эти дыры", работа которых должна быть синхронизирована с работой катушек основных электромагнитов и которые охлаждаются жидким гелием до уровня возникновения сверхпроводимости.

В случае реактора Wendelstein 7-x stellarator используются 50 3.5-метровых секций сверхпроводящих электромагнитов, суммарный вес которых составляет 425 тонн. Это делает процесс монтажа и наладки реактора чрезвычайно сложным и кропотливым занятием. А перекачка большого количества жидкого гелия в количествах, необходимых для поддержания температуры обмоток близкой к абсолютному нулю, является "самым большим кошмаром для любого водопроводчика". Необходимость наличия портов для ввода топлива, вывода отработанного материала и массы точек для ввода в камеру всевозможных датчиков и контролирующих устройств, является причиной еще большего усложнения конструкции и стоимости реактора.

Несмотря на все вышесказанное, специалистам удалось рассчитать и создать конструкцию стелларатор-реактора Wendelstein 7-x. Проведенные тесты уже показали правильность некоторых использованных технологий, которые будут поддерживать положение плазменного шнура с субмиллиметровой точностью. В этих тестах вместо плазмы в камеру реактора был введен луч электронов, который, удерживаемый магнитным полем, двигался вдоль осевой линии камеры реактора, а столкновения электронов этого луча со свободными электронами остаточного газа в камере создавали свечение, по которому можно было видеть все происходящее.

В настоящее время руководство института IPP ожидает получения разрешения на включение реактора от соответствующих германских контролирующих и регулирующих организаций, которое будет получено к концу этого месяца. А уже в ноябре этого года будет произведена попытка первого включения реактора Wendelstein 7-x stellarator. И в заключении следует отметить, что на строительство нового стелларатор-реактора было потрачено чуть больше миллиарда евро, а количество трудовых затрат превысило 1 миллион человеко-часов.

Источник: DailyTechInfo.

http://www.ruscable.ru/news/2015/10/29/Wendelstein_7-x_stellarator_-_reaktor_termoyaderno/,
http://www.dailytechinfo.org/energy/7501-mashiny-monstry-wendelstein-7-x-stellarator-reaktor-termoyadernogo-sinteza-s-neobychnoy-konfiguraciey-magnitnyh-poley.html.

В дополнение...
Стеллараторы круче токамаков: http://tnenergy.livejournal.com/26934.html.
« Последнее редактирование: 10 Ноябрь 2015, 12:12:46 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2076


Просмотр профиля
« Ответ #91 : 10 Ноябрь 2015, 15:15:05 »

Заслуживает отдельный пост...
Стеллараторы круче токамаков

Nov. 9th, 2015 at 10:19 PM

...в глазах СМИ. После статьи в ScienceMag про Wendelstein 7-X, от него сложно стало отбится - в каждом утюге по модному немецкому стелларатору.  Ну, выглядит, он конечно, космически.

Но мало кто отдает себе отчет, что эта установка будет очень далека от достижений токамаков 90х годов, не говоря уже об потенциале ИТЭР, по параметрам плазмы. Как известно, для термоядерной реакции важно тройное произведение - концетрация на температуру на время удержания (т.е. скорость утекания тепла) - n*T*tau. Стеллараторы имеют плохие значения tau и T при довольно неплохих - концетрации, конкретно речь идет об n = 10^20 частиц на кубометр, T = 4 кЭв, Tau - 1 секунда. Для сравнения, ИТЭР - 2*10^20, 15 кЭв, tau = 10...30 секунд. Сложная конфигурация плазмы стеллараторов ухудшает ее теплоизоляцию, а это первейшая забота всех разработчиков термоядерных реакторов.

В итоге, на первой стадии работы, до 2019 года, W 7-x будет сравним с токамаками 80х, только плазму он будет удерживать гораздо, гораздо больше . Даже если бы этот стелларатор был расчитан на работу с тритием, мощность термодерной реакции не поднялась бы выше одного мегаватта, что заметно меньше параметров, которые достигнуты на токамаках JET (где мощность термоядерной реакции составила 70% от мощности подогрева) и JT-60U (где теоретическая термоядерная мощность была бы 110% от подогрева). Напомню, что для ИТЭР планируется как минимум 10 кратное превышение Pfus над Pth.

Кстати, одним из неприятных аспектов плохой термоизоляции плазмы сложной кофигурации, которая нужна стеллараторам для работы является перегрев конструкции. В термоядерных реакторах с 70-х годов используется концепция дивертора - устройства, на которое отводится часть плазмы, охлаждается и отсасывается насосами - так поддеживается ее чистота и канализируется отвод тепла. Так вот, для стеллараторов даже такого относительно небольшого масштаба, как W 7-X на дивертор стекает слишком много энергии, а подвод охлаждения к нему является сложнейшей инженерной проблемой. На данный момент длительность работы Wendelstein 7-X определяется именно неохлаждаемым дивертором - больше 10 секунд он не выдерживает. Обеспечить его охлаждение планируется на следующем апгрейде.

Так что же толкает ученых вкладываться в концепцию стеллараторов (а немецкий аппарат обошелся налогоплательщикам Европы в 1,1 млрд. евро)? Прежде всего тот факт, что в каких-то аспектах стеллараторы ближе к промышленным реакторам, чем токамаки. Главное - это возможность непрерывной работы без каких-то сложностей. Токамаки высоких параметров же сегодня умеют работать только в индуктивном режиме, который принципиально импульсный. Разработка токамаков постоянного действия - задача будущего. Другим преимуществом стеллараторов можно назвать практическое отсутствие срывов плазмы, событий, крайне сильно влияющих на дизайн элементов токамаков. Ну и наконец, как мне кажется, страховка от риска, что возня с токамаками окончится ничем (что в общем можно ожидать, пытаясь представить эксплуатацию ИТЭР как электростанции).

Что ж, скорее всего, еще до конца года мы увидим первые плазменные запуски немецкого стеллараторного монстра.

http://tnenergy.livejournal.com/26934.html.

P.S. И еще про W 7-X

Nov. 11th, 2015 at 12:54 AM

Что-то я вчера не долистал презентацию по запуску стелларатора Wendelstein 7-Х. А там есть стеллараторная электростанция: (см. приложения)....
В общем возьмите ИТЭР, усложните все в несколько раз - и станция готова. Электрическая мощность этого монстра в лучшем случае составит гигаватт.
А стоимость - 9 миллиардов евро.

http://tnenergy.livejournal.com/27288.html.

ИМХО. Уважаемый tnenergy (он же Lektor) пытается сохранить объективность, сравнивая ТОКАМАКи со стеллараторами. Честь и хвала ему за это! К сожалению, термоядерного синтеза нет в Природе (http://www.termoyadu.net/index.php?topic=682.msg2297#msg2297), поэтому любые попытки осуществления оного обречены на провал. Раньше этого не замечали (или не хотели замечать!) ввиду бесконтрольности и неограниченности средств (бюджетных!), выделяемых на УТС (управляемый термоядерный синтез). Теперь же бюджетные деньги стали считать, а потому сравнивать и критиковать. Вон, лазерный (инерциальный) термояд уже отпал: http://www.termoyadu.net/index.php?topic=6.msg2629#msg2629. Следующими, без сомнения, будут ТОКАМАКи, а затем и стеллараторы.
« Последнее редактирование: 11 Ноябрь 2015, 17:36:53 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2076


Просмотр профиля
« Ответ #92 : 16 Ноябрь 2015, 14:06:05 »

В планах Росатома термоядерная энергетика в целом и ИТЭР в частности отдельной строкой не прописаны...
Куда идет Росатом

Nov. 15th, 2015 at 12:27 PM

Главный по инновациям Росатома Вячеслав Першуков не так давно объявил 5 главных направлений этих самых инноваций Росатома

1.Переход на новую технологическую платформу и атомную энергетику будущего: с водо-водяных реакторов на реакторы на быстрых нейтронах.
2. Развитие технологий вывода из эксплуатации ядерных объектов.
3. Создание АЭС малой и средней мощности.
4. Переход на новые цифровые технологии при проектирования и конструировании объектов.
5. Создание российской электротехники нового поколения на основании высокотемпературной сверхпроводимости.

Тут конечно в одну кучу люди, кони, но нельзя не признать, что темы действительно нужные и "горячие".

http://tnenergy.livejournal.com/27742.html.

P.S. Уважаемый tnenergy усматривает термояд в 5-ой строке: "Создание российской электротехники нового поколения на основании высокотемпературной сверхпроводимости". Возможно, это и так, но то, что термояд перешел в разряд довесков в инновационной политике Росатома, становится очевидным. Тем не менее, в научных кругах тема термояда и ИТЭР всё ещё в фаворе, о чём говорит превеликое множество докладов и статей хотя бы на ежегодных Звенигородских конференциях: http://www.fpl.gpi.ru/Zvenigorod/XLII/E.html.
Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2076


Просмотр профиля
« Ответ #93 : 02 Декабрь 2015, 10:39:28 »

Вместо ноября - декабрь...
10 декабря - красный день календаря

Dec. 1st, 2015 at 9:25 PM

Назначена дата первой плазмы "макета инопланетного звездолета" Wendelstein 7-X. После окончания первого этапа сборки и проверки машины немецким атомнадзором на предмет радиационной и радиотоксической безопасности (в плане утечек дейтерия) было получено разрешение на запуск.

Первый этап в ближайшие полгода не будет включать какой-то научной программы, речь идет исключительно о проверке машины. Это будут запуски длительностью меньше секунды с 1 или 2 мегаваттами ECRH подогрева, сначала на гелиевой, потом на водородной плазме. После полугода испытаний машина уйдет на исправление выявленных косяков и установку неохлаждаемого дивертора. Затем последует годичная, уже научная, программа с водородной плазмой высокой мощности длительностью до 10 секунд. После этого дивертор переобуют на охлаждаемую версию, и наконец начнется главное, включая 16 мегаваттные D+D раны длительностью до получаса.

http://tnenergy.livejournal.com/31051.html,
http://www.termoyadu.net/index.php?topic=6.msg2930#msg2930,
http://tnenergy.livejournal.com/tag/wendelstein%207-x.

В дополнение...
Назначена дата запуска немецкого термоядерного реактора
http://lenta.ru/news/2015/12/02/stellarator/,
http://www.welt.de/wissenschaft/article149497961/So-wollen-Forscher-unerschoepfliche-Energie-gewinnen.html.

ИМХО. Несмотря на то, что в проблеме управляемого термоядерного синтеза участвуют прагматичные немцы, тем не менее их стелларатор Wendelstein 7-X - одна из многочисленных бесполезных попыток осуществления термояда по одной простой причине: термоядерного синтеза нет в Природе (http://www.termoyadu.net/index.php?topic=682.msg2297#msg2297).
« Последнее редактирование: 03 Декабрь 2015, 10:25:23 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2076


Просмотр профиля
« Ответ #94 : 10 Декабрь 2015, 19:02:06 »

Первый запуск Wendelstein 7-X состоялся

Dec. 10th, 2015 at 6:39 PM

Сборка и отладка систем немецкого стелларатора окончена успешной демонстрацией гелиевой плазмы. Хотя это скорее символ, чем работа - всего 0,1 секунды температура плазмы превышала 1 млн градусов (100 эВ, это в 100 раз меньше параметров плазмы термоядерного реактора), начало программы научной приемки положено. Интересно, что пробой в 1,8 мг разряженного гелия и последующий подогрев осуществлялся двумя из восьми мегаваттных гиротронов - радиоламп с частотой 140 ГГц, Фактически, вся ближайшая работа по вводу установки в строй будет завязана на постепенное увеличение мощности и длительности плазменных разрядов.

http://tnenergy.livejournal.com/33339.html.

В дополнение...
- Германия запустила мощнейший термоядерный реактор
http://lenta.ru/articles/2015/12/11/wendelstein7x/, http://www.ipp.mpg.de/3984226/12_15.
- Видео запуска Wendelstein 7-X
http://tnenergy.livejournal.com/34189.html.

ИМХО. 10 декабря 2015 года был запущен не только вышеупомянутый стелларатор, но вошёл в промышленную эксплуатацию и отечественный реактор на быстрых нейтронах БН-800 (http://tnenergy.livejournal.com/33562.html, http://www.termoyadu.net/index.php?topic=10.msg2948#msg2948). События разного масштаба, объединенные лишь общей целью: овладение ядерной энергией. Но если энергия деления ядер - давно реальность, то энергия высокотемпературного синтеза - слишком давно только предположение и пока лишь предмет исследований, к сожалению, до настоящего времени безрезультативных.
« Последнее редактирование: 12 Декабрь 2015, 16:49:09 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2076


Просмотр профиля
« Ответ #95 : 13 Декабрь 2015, 14:26:29 »

Вместо послесловия...
Имитатор Солнца: запущен самый большой в мире термоядерный стеллатор

В Германии успешно запущен самый большой в мире термоядерный  реактор-стелларатор Wendelstein 7-X, строительство которого продолжалось порядка 15 лет. Основная цель проекта стоимостью более миллиарда евро - проверка эффективности подобной конфигурации реакторов. В перспективе на базе технологии построят термоядерную электростанцию нового поколения, которая обеспечит мир дешевой и чистой энергией.  

На Wendelstein 7-X ученые возлагают большие надежды: по мнению физиков, термоядерным синтез - будущее мировой энергетики. Топливом для него является тяжелая вода, содержащая изотоп водорода дейтерий, и тритий. Причем  при использовании дейтерия выделяется огромный объем энергии: калорийность термоядерного топлива в миллион раз выше любого из современных неядерных источников энергии. Ученые говорят, что термоядерные электростанции не наносят вреда окружающей среде, а топлива для них достаточно в любой стране мира. По сути, технология управляемого термоядерного синтеза предлагает человечеству неиссякаемый и достаточно безопасный источник энергии, работающий буквально на воде.

Сегодня в мире существуют два перспективных проекта термоядерных реакторов: токамак (тороидальная камера с магнитными катушками) и стелларатор. Конструкцию стелларатора впервые предложил в 1951 году американский физик Лайман Спитцер. Свое название реактор получил от латинского stella - звезда, поскольку внутри такой установки температура сравнима с температурами, достигаемыми внутри ядра Солнца. Стелларатор - своеобразная магнитная ловушка для удержания высокотемпературной плазмы. Принципиальное отличие стелларатора от разработанного в СССР токамака в том, что магнитное поле в стеллаторе для удержания плазмы полностью создается внешними катушками, что позволяет использовать установку и в непрерывном режиме. В токамаке для разогрева плазмы и удержания равновесия плазменного шнура в вакуумной камере применяется электрический ток.

Для создания особой конфигурации магнитного поля в стеллаторе необходимы катушки сложной формы, производство которых было освоено далеко не сразу. Поэтому первые модели стеллараторов давали плазму с худшими параметрами, чем токамаки. И лишь в последнее время, благодаря появлению мощных суперкомпьютеров, позволяющих производить сложнейшие расчеты, разработали технологии, позволяющие удерживать плазму в магнитном поле сложной конфигурации.

Реактор Wendelstein 7-X находится в Грифсвальде, на северо-востоке Германии. Он построен специалистами Института физики плазмы Макса Планка, а все его основные узлы и компоненты были рассчитаны при помощи суперкомпьютера. Wendelstein 7-x является первым полномасштабным оптимизированным стелларатор-реактором, который создает в своей камере неоднородное магнитное поле, имеющее области с завихрениями и напоминающее несколько раз перекрученную ленту Мебиуса. Такое магнитное поле обеспечивает среду, плазма в которой обладает большей стабильностью, а следовательно, всеми реакциями можно управлять более эффективно.

Установка состоит из 70 сверхпроводящих катушек общим весом более 725 тонн. Они способны создавать магнитное поле, удерживающее плазму с температурой 60-130 млн градусов - это в несколько раз выше, чем температура в центре солнечного ядра. Вся конструкция окружена прочной теплоизолирующей оболочкой диаметром 16 метров. Авторы данного проекта надеются поставить на реакторе новый рекорд по удержанию плазмы - 30 минут (нынешний для токамаков составляет 30 секунд).

Эксперименты на Wendelstein 7-X ученые планируют провести в три этапа. На первом, начавшемся 10 декабря, физики проведут опыты с получением в реакторе гелиевой плазмы, которую нужно удерживать в равновесном состоянии 1-2 сек. Выбор для начала запуска гелия обусловлен легкостью его перехода в состояние плазмы. В ходе испытаний первой фазы ученые собираются проверить работу систем реактора и при возникновении неисправностей оперативно их устранять. Вчерашние тесты прошли успешно. Физикам удалось при помощи микроволнового импульса нагреть один миллиграмм газообразного гелия до температуры в миллион градусов и удержать полученную плазму в равновесии в течение 0,1 секунды. Ученые отследили характеристики магнитного поля полученной плазмы и запустили компьютерную систему контроля над магнитным полем. В последующие дни исследователи будут наращивать мощность излучения и повышать  температуру плазмы.

На конец января 2016 года намечены испытания с водородной плазмой. После успешного завершения второй фазы экспериментов ученые будут удерживать на Wendelstein 7-X водородную плазму в течение 10 секунд. Конечные цели проекта, которых физики хотят достигнуть на третьем этапе, - удержать плазму в реакторе до получаса. При успешных результатах всех испытаний планируется построить промышленный стелларатор  для коммерчески выгодного производства электроэнергии.

По словам руководителя проекта Томаса Клингера, от экспериментов на Wendelstein 7-X зависит будущее термоядерной энергетики. Сейчас важно понять принципы работы установки, выяснить, насколько верны проведенные расчеты и что следует подкорректировать. Wendelstein 7-X является на сегодня самым мощным стелларатором в мире. Его ближайший конкурент - LHD (Large Helical Device), расположен в Японии.

http://www.dsnews.ua/future/imitator-solntsa-zapushchen-moshchneyshiy-termoyadernyy-reaktor-11122015150400.

ИМХО. С запуском стелларатора Wendelstein 7-X началось открытое противостояние этого типа реакторов с ТОКАМАКами. Понятно также, что в последующем именно немецкий стелларатор будет на острие этого противостояния, и в случае даже минимального перевеса над существующими (действующими!) ТОКАМАКами будут сделаны далекоидущие выводы, возможно, вплоть до отказа от ТОКАМАКа-ИТЭР. Что, впрочем, и не удивительно. Ведь ТОКАМАК - это детище СССР/РФ, а стелларатор - США: http://energ2010.ru/Stati/Elektrostanciya/AES/Klassifikaciya_Aes/Termoyaderny_reaktor/Stellarator.html, http://atom.belta.by/ru/news_belta/view/germanija-zapustila-imitator-solntsa-moschnejshij-termojadernyj-reaktor-v-mire-7190/, http://www.atomic-energy.ru/news/2015/12/14/61926.

P.S. На германской термоядерной установке будет проходить отработка безнейтронных реакций
http://www.atomic-energy.ru/news/2015/12/16/61991, http://novosti-n.org/ukraine/read/110671.html.

P.S.S. Рекордно низкие цены на нефть - не лучший фон для исследований в области термояда...
- Мировые цены на нефть рухнули до уровня 2004 года
http://www.gazeta.ru/business/news/2015/12/21/n_8037179.shtml, http://lenta.ru/news/2015/12/21/oil/.
« Последнее редактирование: 21 Декабрь 2015, 17:06:09 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2076


Просмотр профиля
« Ответ #96 : 23 Декабрь 2015, 16:09:41 »

И ещё вместо послесловия...
Руководитель Wendelstein 7-X: Мы на пути к новому источнику энергии

В Германии начались испытания установки ядерного синтеза Wendelstein 7-X. Это - новый путь обеспечить человечество энергией без нефти и газа. Но этот путь будет долгим, говорят ученые.

Это, безусловно, одна из самых интересных новостей в мире науки в уходящем году: запуск и успешное начало работы в декабре 2015 года экспериментального термоядерного реактора Wendelstein 7-X, самого мощного в мире на сегодняшний момент. На его создание ушли многие годы работы и не меньше одного миллиарда евро. Принцип работы установки - термоядерный синтез, подобный тому, что происходит на Солнце, но управляемый человеком.

В реакторе при помощи сверхвысоких температур образуется гелий из слияния изотопов водорода. Такого рода установки открывают путь к новому, альтернативному традиционным, источнику энергии, при этом более безопасному для окружающей среды, чем уже существующие атомные электростанции.

Хотя сам проект реализуется в немецком Грайфсвальде, он будет открыт для исследователей со всего мира, заверил в интервью DW профессор Томас Клингер (Thomas Klinger), возглавляющий проект Wendelstein 7-X в институте физики плазмы общества имени Макса Планка. Тем более, что от начала испытаний до окончания экспериментов еще очень далеко, а первый имеющий практическое значение термоядерный реактор человечество, по словам Клингера, увидит не раньше, чем во второй половине нашего века.

DW: Вам уже удалось получить первую плазму с помощью этой установки, поздравляем. Какие ощущения?

Томас Клингер: Ну, целому ряду людей до нас это уже удавалось сделать, но это первая плазма, добытая с помощью такой установки. Это был особенный момент после стольких лет подготовки.

- Что это означает для науки?

- Для науки это означает, что благодаря Wendelstein 7-X у ученых всего мира в распоряжении оказалась новая уникальная ультрасовременная исследовательская установка. Использовать ее будут все - это немецкий проект, но он тесно встроен в структуру международных исследований. Мы занимаемся физикой плазмы, ее цель - исследовать состояние плазмы, которая похожа на ту, что существует на Солнце.

- Почему в Грайфсвальде вы сделали выбор в пользу типа реактора, который называется стелларатор?

- У стелларатора есть несколько преимуществ, которые способствуют тому, что образование плазмы происходит более стабильно. В итоге, плазма - этот электрически заряженный газ очень высокой температуры - поддерживается в таком состоянии до получаса. Добиться этого еще ни у кого на Земле не получалось.

- Теоретически, управляемая термоядерная реакция была бы идеальной заменой для ископаемых источников энергии. Но сколько времени пройдет, прежде чем начнется практическое применение таких технологий?

- То, чем мы занимаемся, это пока все еще изучение основ. Поэтому мы и строим такие исследовательские установки. Мы создаем базу для электростанции, которая основывается на принципах управляемой термоядерной реакции. Но путь еще долгий, верно. Нам еще понадобится не меньше 10 лет исследований, прежде чем мы получим ясную картину эффективности этой конфигурации, этой особой геометрии магнитного поля (разогретую плазму внутри реактора удерживает магнитное поле. - Ред.).

Но и когда появится ясная картина, исследование наше на этом не закончится. Необходимо будет сделать всевозможные уточнения. Только тогда можно будет делать прогнозы о том, как должна выглядеть такая электростанция, какой размер, какими могут быть конкретные технические решения. И только в этом случае можно будет уверенно говорить о каком-то горизонте планирования. Но все это произойдет уже во второй половине XXI века. Быстрых решений тут нет. Но то, что это станет возможным только ко второй половине нашего века - не так уж и плохо, как раз вовремя - когда наступят проблемы с нынешними технологиями (производства энергии. - Ред.).

- Что останавливает вас больше - нет соответствующей технологии или не хватает определенных знаний?

- Сами по себе технологии достаточно известны. Здесь нет ничего, что напоминало бы мир научной фантастики: нужны магниты и металлические конструкции. И еще приходится очень активно заниматься вопросами физики материалов. Исследование материалов - вообще важная тема, когда речь заходит о тепловых потоках очень высокой температуры в условиях термоядерной реакции. Есть еще пара проблем, но в целом, я должен сказать, нет какого-то фактора, который принципиально стоит на пути наших исследований.

- Вы заговорили о второй половине века, но пока до нее далеко, какие планы у вас на первую половину следующего года?

- Мы в самом начале длительного периода исследований: на основе работы стелларатора нам нужно понять, имеет ли будущий промышленный термоядерный реактор экономическую целесообразность. Но начинаем мы очень скромно. Пока мы начали с очень коротких фаз разогревания плазмы. Ближайшая цель - увеличить мощность, удлинить время запусков. Во время запусков нам предстоит провести множество исследований. Это постоянная, непрекращающаяся работа, которую будут останавливать только периоды усовершенствования самой установки. Эти периоды продлятся до 2020 года - мы хотим встроить дополнительные узлы непосредственно внутрь реактора, в камеру, где находится плазма.

http://www.dw.com/ru/%D1%80%D1%83%D0%BA%D0%BE%D0%B2%D0%BE%D0%B4%D0%B8%D1%82%D0%B5%D0%BB%D1%8C-wendelstein-7-x-%D0%BC%D1%8B-%D0%BD%D0%B0-%D0%BF%D1%83%D1%82%D0%B8-%D0%BA-%D0%BD%D0%BE%D0%B2%D0%BE%D0%BC%D1%83-%D0%B8%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA%D1%83-%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D0%B8/a-18924762?maca=rus-yandex_new_politics_mm-9641-xml, http://www.atomic-energy.ru/interviews/2015/12/23/62177.
« Последнее редактирование: 23 Декабрь 2015, 16:16:24 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2076


Просмотр профиля
« Ответ #97 : 18 Январь 2016, 15:56:48 »

Снова приблизились...
Физики приблизились к созданию лазерного термоядерного реактора

МОСКВА, 18 янв – РИА Новости. Физики из Калифорнии создали своеобразные "ядерные очки", которые позволяют наблюдать за тем, куда поступает энергия во время сжатия термоядерного топлива при помощи мощных пучков лазера, что позволит в ближайшем будущем создать первые рабочие термоядерные реакторы, говорится в статье, опубликованной в журнале Nature Physics.

"До создания этой методики, мы, условно говоря, вслепую шарили руками в темноте, пытаясь нащупать реакцию. Теперь у нас появилась возможность следить за тем, куда идет энергия и улучить работу систем, направляющих энергию в термоядерное топливо", — заявил Кристофер Макгаффи (Christopher McGuffey) из университета Калифорнии в Сан-Диего (США).

Сегодня существует два возможных пути к созданию самоподдерживающейся термоядерной реакцией – "медленный" термояд в виде токамаков и прочих магнитно-плазменных систем, на основе которых сегодня строится международный экспериментальный термоядерный реактор ИТЕР во Франции, и "быстрый" термояд.

Под последним словом физики понимают особые системы, в которых термоядерная реакция запускается практически мгновенно, за миллионные доли секунды, в результате сжатия термоядерного топлива при помощи мощных пучков лазерного излучения. Такой реактор вырабатывает серию из термоядерных микровзрывов, из которых извлекается энергия.

Примерно 10 лет назад "быстрый" термоядерный синтез считался более перспективным, чем токамаки, однако неудачи в работе американской Национальной зажигательной установки, NIF, только два года назад показавшей сколь-либо значимые результаты, заставили многих физиков вернуться к идее "медленного" синтеза.

Как надеются Макгаффи и его коллеги, созданная ими методика наблюдения за распределением энергии по сжимаемому образцу топлива поможет вернуть лидерство "быстрым" реакторам. Они открыли ее относительно случайно – наблюдая за сжатием дейтерия и трития, авторы статьи обратили внимание на то, что капсула, в которой они содержались, содержит в себе некоторое количество меди.

Как объясняют физики, при облучении лазером медь разогревается до сверхвысоких температур и начинает излучать рентгеновские лучи на определенных частотах волн, за которыми можно наблюдать, используя детекторы электромагнитных волн.

Опираясь на это наблюдение, группа Макгаффи создала специальную "камеру", которая позволяла им следить за тем, где больше всего разогревалась медь, и соответственно, где капсула получала максимум энергии. Эти наблюдения, по словам авторов статьи, уже позволили им повысить КПД лазера (долю энергии, которая передается в топливо) до 7%, что в четыре раза больше, чем удавалось достичь на NIF и других системах "быстрого" термоядерного синтеза.

По словам физиков, данный показатель можно легко увеличить до 15% при помощи дальнейших оптимизаций и увеличения размеров капсулы и мощности лазера. Как надеются ученые, их работа возродит интерес к лазерному термоядерному синтезу среди их коллег и чиновников профильных госорганов.

http://ria.ru/science/20160118/1361316460.html, http://lenta.ru/news/2016/01/18/icf/.
« Последнее редактирование: 18 Январь 2016, 15:59:40 от Avtor » Записан
Lektor
-
*
Сообщений: 32


Просмотр профиля
« Ответ #98 : 24 Январь 2016, 12:48:50 »

В планах Росатома термоядерная энергетика в целом и ИТЭР в частности отдельной строкой не прописаны...
Куда идет Росатом

Nov. 15th, 2015 at 12:27 PM

Главный по инновациям Росатома Вячеслав Першуков не так давно объявил 5 главных направлений этих самых инноваций Росатома

1.Переход на новую технологическую платформу и атомную энергетику будущего: с водо-водяных реакторов на реакторы на быстрых нейтронах.
2. Развитие технологий вывода из эксплуатации ядерных объектов.
3. Создание АЭС малой и средней мощности.
4. Переход на новые цифровые технологии при проектирования и конструировании объектов.
5. Создание российской электротехники нового поколения на основании высокотемпературной сверхпроводимости.

Тут конечно в одну кучу люди, кони, но нельзя не признать, что темы действительно нужные и "горячие".

http://tnenergy.livejournal.com/27742.html.

P.S. Уважаемый tnenergy усматривает термояд в 5-ой строке: "Создание российской электротехники нового поколения на основании высокотемпературной сверхпроводимости". Возможно, это и так, но то, что термояд перешел в разряд довесков в инновационной политике Росатома, становится очевидным. Тем не менее, в научных кругах тема термояда и ИТЭР всё ещё в фаворе, о чём говорит превеликое множество докладов и статей хотя бы на ежегодных Звенигородских конференциях: http://www.fpl.gpi.ru/Zvenigorod/XLII/E.html.

Нет, термояда здесь нет вообще. 5-ая строка - это проектный центр "Русский сверхпроводник" и всякие электродвигатели-генераторы-линии передач.
Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2076


Просмотр профиля
« Ответ #99 : 05 Февраль 2016, 04:47:25 »

В стеллараторе Wendelstein 7-X получили водородную плазму

В Институте физики плазмы Общества имени Макса Планка (Грайфсвальд, Германия) 3 февраля в 17:25 по московскому времени был успешно проведен эксперимент, в ходе которого ученые запустили термоядерный реактор Wendelstein 7-X для получения плазмы. Это уже второй пуск реактора, первый состоялся 10 декабря 2015 года, тогда был осуществлен запуск с гелиевой плазмой. В декабре плазму удалось удержать в равновесном состоянии около 0,1 секунды.

Сейчас эксперимент также прошел удачно, хотя время, в течение которого плазму удерживали в стабильном состоянии, также невелико, и равно примерно 0,1 с. Специалисты надеются продержать плазму в стабильном состоянии около получаса — это конечная цель эксперимента.

Первый опыт был проведен с гелием, эксперимент прошел удачно. Так же удачно прошел и второй этап — удалось получить водородную плазму, проблем никаких не возникло. Плазму получали при помощи мощного СВЧ-импульса. По словам ученых, импульс такой мощности можно было бы получить, собрав вместе примерно 6000 микроволновок.

Wendelstein 7-X начали строить в 2005 году, а закончили сборку в 2014 году. После этого ученые готовили реактор к эксперименту, завершив приготовления только в конце 2015 года. Стоимость реализации проекта достигла $435 млн. Сейчас в мире уже построено два типа перспективных реакторов — это реактор типа токамак, и реактор типа стелларатор. По мнению некоторых специалистов, стелларатор — более перспективный тип реактора, поскольку плазму в стабильном состоянии удерживать здесь легче, чем в токамаке. Руководитель проекта Томас Клингер говорит, что стелларатор сложнее собрать, чем токамак, но им проще управлять. Правда, существует и ряд сложностей — например, охлаждение магнитов, которые используются для удержания плазмы в стабильном состоянии.

Главной деталью Wendelstein 7-X является большой тороид наружного диаметра 11 м. В нём вращающаяся плазма заключена в магнитном поле таким образом, чтобы не касаться стенок. Магнитное поле производится пятьюдесятью 3,5-метровыми неподвижными магнитными катушками. Другие 20 подвижных магнитов служат для целенаправленного воздействия на магнитное поле.

«Впечатляющие результаты, достигнутые на старте, это настоящее событие», — сообщил Дэвид Андерсон, один из участников проекта. Интересно, что далеко не все физики считают создание термоядерных реакторов перспективным делом. Некоторые высказывали мнение (и придерживаются его), согласно которому работа над термоядерными реакторами — это пустая трата денег. Средства требуются весьма значительные, а результата пока нет, хотя попытки построить термоядерный реактор продолжаются много лет.

Но несмотря на критику, немцы решили все же реализовать проект по созданию стелларатора, и продолжают делать все, чтобы достичь запланированных целей.

https://geektimes.ru/post/270402/, http://www.nanonewsnet.ru/news/2016/v-stellaratore-wendelstein-7-x-poluchili-vodorodnuyu-plazmu, http://tnenergy.livejournal.com/41354.html.

P.S. А вот китайские ученые продержали водородную плазму в стабильном состоянии 102 секунды: https://geektimes.ru/post/270492/.
В отличие от немцев, китайцы работают с реактором типа токамак, их система получила название Experimental Advanced Superconducting Tokamak (EAST).
При этом они планируют достичь более значительных результатов — нагреть плазму до 100 млн градусов и продержать ее в стабильном состоянии около 17 минут. До постройки же коммерческой модели реактора, которая будет давать энергию, остается еще очень много времени, годы, говорят китайские специалисты.

P.P.S. Откуда пошли ноги термояда...
Шестьдесят лет назад у нас перестали строить паровозы и замахнулись на рукотворный термояд
http://www.rg.ru/2016/02/19/pochemu-ne-sbylis-prognozy-kurchatova-s-tribuny-sezda.html,
http://www.atomic-energy.ru/SMI/2016/02/24/63616.
« Последнее редактирование: 28 Февраль 2016, 21:02:03 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2076


Просмотр профиля
« Ответ #100 : 03 Март 2016, 21:21:39 »

CША достигли прогресса в инерциальном управляемом термоядерном синтезе

Физики из Ливерморской национальной лаборатории в США в январе 2016 года сообщили о прогрессе в инерциальном управляемом термоядерном синтезе. При помощи новой технологии ученые сумели в четыре раза повысить эффективность подобных установок. Результаты исследований опубликованы в журнале Nature Physics, кратко о них проинформировали Ливерморская национальная лаборатория и Калифорнийский университет в Сан-Диего. О новых достижениях рассказывает «Лента.ру».

Человек давно пытается найти альтернативу углеводородным источникам энергии (углю, нефти и газу). Сжигание топлива загрязняет окружающую среду. Его запасы стремительно сокращаются. Выход из ситуации — зависимости от водных ресурсов, а также климата и погоды, — создание термоядерных электростанций. Для этого необходимо добиться управляемости реакций термоядерного синтеза, при которых выделяется необходимая человеку энергия.

В термоядерных реакторах тяжелые элементы синтезируются из легких (образование гелия в результате слияния дейтерия и трития). Обычные (ядерные) реакторы, наоборот, работают на распаде тяжелых ядер на более легкие. Но для синтеза необходимо разогреть водородную плазму до термоядерных температур (примерно таких, как в ядре Солнца, — сто миллионов градусов Цельсия и более) и удерживать ее в равновесном состоянии до возникновения самоподдерживающейся реакции.

Работы ведутся по двум перспективным направлениям. Первое связано с возможностью удержания разогретой плазмы при помощи магнитного поля. К подобного рода реакторам относятся токамак (тороидальная камера с магнитными катушками) и стелларатор. В токамаке по плазме в форме тороидального шнура пропускают электрический ток, в стеллараторе магнитное поле наводится внешними катушками.

Строящийся на территории Франции ИТЭР (Международный экспериментальный термоядерный реактор) относится к токамакам, а запущенный в декабре 2015 года в Германии Wendelstein 7-X — к стеллараторам.

Второе перспективное направление управляемого термоядерного синтеза связано с лазерами. Физики предлагают при помощи лазерного излучения быстро нагреть и сжать до необходимых температур и плотностей вещество, чтобы оно, будучи в состоянии инерционно удерживаемой плазмы, обеспечило протекание термоядерной реакции.

Инерциальный управляемый термоядерный синтез предполагает использование двух основных методов зажигания предварительно сжатой мишени: ударного — при помощи сфокусированной ударной волны, и быстрого — имплозии (взрыва внутрь) сферического водородного слоя внутри мишени. Каждый из них (в теории) должен обеспечить оптимальное преобразование лазерной энергии в импульсную и ее последующую передачу сжатой сферической термоядерной мишени.

Установка в Национальном комплексе лазерных термоядерных реакций в США применяет второй подход, предполагающий разделение фаз сжатия и нагрева. Это, по словам ученых, позволяет снизить плотность топлива (или его массу) и обеспечить более высокие коэффициенты усиления. Нагрев порождается коротким импульсом петаваттного лазера: интенсивный электронный пучок отдает свою энергию мишени. Эксперименты, о которых сообщается в последнем исследовании, проводились в Нью-Йорке на установке OMEGA-60 в Лаборатории лазерной энергетики Рочестерского университета, включающей в себя 54 лазера с суммарной энергией 18 килоджоулей.

Изученная учеными система устроена следующим образом. Мишень представляет собой пластиковую капсулу, на внутреннюю стенку которой нанесен тонкий дейтерий-тритиевый слой. При облучении капсулы лазерами она расширяется и заставляет сжиматься расположенный внутри нее водород (в ходе первой фазы), который разогревается (в ходе второй фазы) до плазмы. Плазма из дейтерия и трития дает рентгеновское излучение и давит на капсулу. Данная схема позволяет системе не испариться после ее облучения лазером и обеспечивает более равномерный нагрев плазмы.

В своих опытах ученые в пластиковую оболочку ввели медь. Когда лазерный луч направляется на капсулу, та выбрасывает быстрые электроны, которые попадают на медные индикаторы и заставляют их испускать рентгеновские лучи. Ученые впервые смогли представить технику визуализации электронов K-оболочки, позволяющую отслеживать перенос энергии электронами внутри капсулы и в результате более аккуратно рассчитывать параметры системы. Важность этой работы заключается в следующем.

Достижению высокой степени сжатия мешают быстрые электроны, в энергию которых превращается большая доля поглощенного мишенью излучения. Длина свободного пробега таких частиц по порядку совпадает с диаметром мишени, вследствие чего она преждевременно перегревается и не успевает сжаться до нужных плотностей. Выполненное исследование позволило заглянуть внутрь мишени и отследить происходящие там процессы, предоставив новую информацию о необходимых для оптимального излучения мишени параметрах лазера.

Работы, относящиеся к инерциальному термоядерному синтезу, кроме США ведутся в Японии, Франции и России. В городе Саров Нижегородской области на базе Всероссийского научно-исследовательского института экспериментальной физики в 2020 году планируется ввести в строй лазерную установку двойного назначения УФЛ-2М, которая среди прочих задач должна использоваться для исследований условий зажигания и горения термоядерного топлива.

Эффективность термоядерной реакции определяется как отношение энергии, выделившейся в реакции синтеза, к полной энергии, потраченной на нагрев системы до необходимых температур. Если эта величина больше единицы (ста процентов), лазерный термоядерный реактор можно считать успешным. В экспериментах физикам удалось до семи процентов энергии лазерного излучения передать топливу. Это в четыре раза превышает ранее достигнутую эффективность систем быстрого зажигания. Компьютерное моделирование позволяет спрогнозировать повышение эффективности до 15 процентов.

Опубликованные результаты повышают шансы на то, что Конгресс США продлит финансирование мегаджоулевых установок, таких как Национальный комплекс лазерных термоядерных реакций в городе Ливермор (затраты на создание и поддержание его работоспособности превысили четыре миллиарда долларов). Несмотря на скептицизм, сопровождающий исследования в области термоядерного синтеза, они медленно, но уверенно движутся вперед. В этой области перед учеными стоят не фундаментальные, а технологические задачи, требующие международного сотрудничества и адекватного финансирования.

http://lenta.ru/articles/2016/03/03/fusion/, http://newsland.com/user/4296647983/content/zazhech-navsegda/5087946, https://maxpark.com/community/5654/content/4974384.

P.S. Инерциальный термоядерный синтез ускорят турбулентностью
http://lenta.ru/news/2016/03/17/fusion/.
« Последнее редактирование: 17 Март 2016, 10:52:54 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2076


Просмотр профиля
« Ответ #101 : 14 Март 2016, 09:10:19 »

Тихий термоядерный переворот

Mar. 13th, 2016 at 4:58 PM

Наверное нет ни одного поля человеческой деятельности, столь полной разочарований и отвергнутых героев, как попытки создать термоядерную энергетику. Сотня концепций реакторов, десятки команд, которые последовательно становились фаворитами публики и госбюджетов, и наконец вроде определившийся в победитель в виде токамаков. И вот опять - достижения новосибирских ученых  возрождают интерес по всему миру к концепции, жестоко растоптанной в 80х. А теперь подробнее...

Среди всего многообразия предложений, как же извлекать энергию из термоядерного слияния больше всего ориентируются на стационарное удержание относительно неплотной термоядерной плазмы. Например проект ИТЭР и шире - тороидальные ловушки токамаки и стеллараторы - именно отсюда. Тороидальные они потому что это простейшая форма замкнутого сосуда из магнитных полей (из-за теоремы о причесывании ежа сферический сосуд сделать не получится). Однако на заре исследований в поле управляемого термоядерного синтеза фаворитами выглядели не ловушки сложной трехмерной геометрии, а попытки удержать плазму в так называемых открытых ловушек. Это обычно тоже магнитные сосуды циллиндрической формы в которых плазма хорошо удерживается в радиальном направлении и утекает с обоих концов. Идея изобретателей тут проста - если нагрев новой плазмы термоядерной реакцией будет идти быстрее, чем расход тепла с утекающей с концов - то и бог с ним, с открытостью нашего сосуда, энергия будет вырабатываться, а утечка все равно будет происходить в вакуумный сосуд и топливо будет гулять в реакторе, пока не сгорит.

Кроме того, во всех открытых ловушках применяются те или иные способы задержать плазму от вылета через концы - и самый простой здесь - это резко усилить магнитное поле на концах (поставить магнитные “пробки” в отечественной терминологии или “зеркала” в западной), при этом налетающие заряженные частицы будут, фактически, отпружинивать от зеркал-пробок и только небольшая часть плазмы будет проходить сквозь них и попадать в специальные расширители.

По сравнению с замкнутыми конкурентами в плюсы ОЛ можно записать гораздо более простую геометрию реактора и ее магнитной системы, а значит -  дешевизну. Так, после падения первого фаворита УТС - Z-pinch реакторов открытые ловушки получают максимальный приоритет и финансирование в начале 60х годов, как обещающие быстрое решение за небольшие деньги.

Однако тот самый Z-pinch пошел в отставку не случайно. Его похороны были связаны с проявлением природы плазмы - нестабильностями, которые разрушали плазменные образования при попытке сжать плазму магнитным полем. И именно эта, плохо изученная 50 лет назад особенность сразу начала раздражающе мешать экспериментаторам с открытыми ловушками.  Желобковые неустойчивости заставляют усложнять магнитную систему, вводя кроме простых круглых соленоидов “палки Иоффе”, “бейсбольные ловушки” и “катушки инь-янь” и снижать отношение давления магнитного поля к давлению плазмы (параметр β).

Кроме того, утечка плазмы через магнитные пробки идет по разному для частиц с разной энергии, что приводит к неравновесности плазмы (т.е. немаксвелловскому спектру скоростей частиц), что вызывает еще ряд неприятных неустойчивостей. Эти неустойчивости в свою очередь “раскачивая” плазму ускоряют ее уход через концевые пробкотроны.В конце 60х годов простые варианты открытых ловушек достигли предела по температуре и плотности удерживаемой плазмы, и эти цифры были намного порядков меньше нужных для термоядерной реакции. Проблема в основном заключалась в быстром продольном охлаждении электронов, на которых затем теряли энергию и ионы. Нужны были новые идеи.

Физики предлагают новые решения, связанные прежде всего с улучшением продольного удержания плазмы: амбиполярное удержание, гофрированные ловушки и газодинамические ловушки.

    Амбиполярное удержание базируется на том факте, что электроны “вытекают” из открытой ловушки в 28 раз быстрее ионов дейтерия и трития, и на концах ловушки возникает разность потенциалов - положительный от ионов внутри и отрицательный снаружи. Если на концах установки сделать усиления поля с плотной плазмой, то амбиполярный потенциал в плотной плазме будет удерживать внутреннее менее плотное содержимое от разлета.

    Гофрированные ловушки создают на конце “ребристое” магнитное поле, на котором разлет тяжелый ионов тормозиться из-за “трения” об запертые в “впадинах” поля ловушки.

    Наконец газодинамические ловушки создают магнитным полем аналог сосуда с маленькой дырочкой, из которого плазма вытекает с меньшей скоростью, чем в случае “зеркал-пробок”.

Интересно, что все эти концепции, по которым были построены экспериментальные установки потребовали дальнейшего усложнения инженерии открытых ловушек. Прежде всего, здесь впервые в УТС появляются сложные ускорители нейтральных пучков, которые нагревают плазму (в первых установках нагрев достигался обычным электрическим разрядом) и модулируют ее плотность в установке. Добавляется и радиочастотный нагрев, впервые появившийся на рубеже 60х/70х в токамаках. Строятся крупные и дорогие установки Gamma-10 в Японии, TMX в США, АМБАЛ-М, ГОЛ и ГДЛ в Новосибирском ИЯФе.

Параллельно, в 1975 на ловушке 2Х-IIB американские исследователи первыми в мире достигают символичной температуры ионов в 10 кЭв - оптимальной для протекания термоядерного горения дейтерия и трития. Надо заметить, что в 60е и 70е прошли под знаком погони за нужной температуры хоть каким путем, т.к. температура определяет, заработает ли реактор вообще, тогда как два других параметра - плотность и скорость утечки энергии из плазмы (или чаще это называют “временем удержания”) можно компенсировать увеличением размера реактора. Однако несмотря на символическое достижение, 2Х-IIB была очень далеко от того, что бы называться реактором - теоретическая выделяемая мощность составляла бы 0,1% от затрачиваемой на удержание и подогрев плазмы. Серьезной проблемой оставалась низкая температура электронов - порядка 90 эВ на фоне 10 кЭв ионов, связанная с тем, что так или иначе электроны охлаждались о стенки вакуумной камеры, в которой расположена ловушка.

В начале 80х приходится пик развития этой ветви УТС. Пиком развития становится американский проект MFTF стоимостью в 372 млн долларов (или 820 млн в сегодняшних ценах, что приближает проект по стоимости к такой машине как Wendelstein 7-X или токамаку K-STAR).

Это была амбиполярная ловушка со сверхпроводящими магнитами, в т.ч. шедевральными концевыми “инь-янь”, многочисленными системами и подогрева диагностики плазмы, рекордная по всем параметрам. На нем планировалось достичь Q=0,5, т.е. энерговыход термоядерной реации всего в два раза меньше затрат на поддержание работы реактора. Каких же результатов достигла эта программа? Она была закрыта политическим решением в состоянии, близком к готовности к запуску.

Не смотря на то, что это шокирующее со всех сторон решение очень сложно объяснить, я попробую.

К 1986 году, когда MFTF была готова к запуску на небосклоне концепций УТС зажглась звезда другого фаворита. Простая и дешевая альтернатива “забронзовевшим” открытым ловушкам, которые к этому моменту стали слишком сложными и дорогими на фоне изначальной концепции начала 60х  Все эти сверхпроводящие магниты головоломных конфигураций, инжекторы быстрых нейтралов, мощные радиочастотные системы нагрева плазмы, головоломные схемы подавления нестабильности - казалось, что никогда такие сложные установки не станут прообразом термоядерной электростанции.


Итак токамаки. В начале 80х годов эти машины достигли параметров плазмы, достаточной для горения термоядерной реакции. В 1984 году пущен европейский токамак JET, который должен показать Q=1, и он использует простые медные магниты, его стоимость составляет всего 180 млн долларов. В СССР и Франции проектируют сверхпроводящие токамаки, которые почти не тратят энергию на работу магнитной системы. В то же время физики, работающие на отрытых ловушках годами не могут добиться прогресса в повышении устойчивости плазмы, электронной температуры, и обещания по достижениям MFTF становятся все более расплывчатыми.  Следующие десятилетия, кстати, покажут, что ставка на токамаки оказалась сравнительно оправданной - именно эти ловушки дошли до уровня мощностей и Q, интересных энергетикам.

Решение по MFTF окончательно подрывает позиции этого направления. Хотя эксперименты в новосибирском ИЯФ и на японской установке Gamma-10 продолжаются, в США закрывают и довольно успешные программы предшественников TMX и 2Х-IIB.

Конец истории? Нет. Буквально на наших глазах, в 2015 году, происходит удивительная тихая революция. Исследователи из института ядерной физики им. Будкера в Новосибирске, последовательно улучшавшие ловушку ГДЛ (кстати, надо заметить, что на западе первенствовали амбиполярные, а не газодинамические ловушки) внезапно достигают параметров плазмы, которые были предсказаны, как “невозможные” скептиками в 80х.

Три основные проблемы, похоронившие открытые ловушки - МГД устойчивость в осесимметричной конфигурации (потребовавшая магнитов сложной формы), неравновесность функции распределения ионов (микронеустойчивости), и низкая электронная температура. В 2015 году ГДЛ, при значении бета 0,6 достигла температуры электронов в 1 кЭв. Как это произошло?

Уход от осевой (цилиндрической) симметрии в 60х в попытках победить желобковые и другие МГД-неустойчивости плазмы привел кроме усложнения магнитных систем еще и к увеличению потерь тепла из плазмы в радиальном направлении. Группа ученых, работавших с ГДЛ использовала идею 80х годов по приложению радиального электрического поля, создающего завихренную плазму. Этот подход привел к блестящей победе - при бета 0,6 (напомню,  что это отношение давления плазмы к давлению магнитного поля - весьма важный параметр в конструкции любого термоядерного реактор - т.к. скорость и плотность энерговыделения определяются давлением плазмы, а стоимость реактора определяется мощностью его магнитов), по сравнению с токамачной 0,05-0,1 плазма стабильна.

Вторая проблема с микронеустойчивостями, вызванная недостатком ионов с низкими температурами (которые вытягиваются с концов ловушки амбиполярным потенциалом) была решена с помощью наклона инжекторов нейтральных лучей под углом. Такое расположение создает вдоль плазменной ловушки пики плотности ионов, которые задерживают “теплые” ионы от ухода. Относительно простое решение приводит к полному подавлению микронеустойчивостей и к значительному улучшению параметров удержания плазмы.

Наконец, главный “могильщик” - низкая температура электронов. Хотя для ионов в ловушках достигнуты термоядерные параметры, высокая электронная температура является ключем к удержанию горячих ионов от остыванию, а значит к высоким значением Q. Причиной низкой температуры является высокая теплопроводность “вдоль” и амбиполярный потенциал, засасывающий “холодные” электроны из расширителей за концами ловушки внутрь магнитной системы. До 2014 года электронная температура в открытых ловушках не превышала 300 эВ, а в ГДЛ было получено психологически важное значение в 1 кЭв. Оно получено за счет тонкой работы с физикой взаимодействия электронов в концевых расширителях с нейтральным газом и поглотителями плазмы.

Это переворачивает ситуацию с ног на голову. Теперь уже простые ловушки снова угрожают первенству токамаков, достигших монструозных размеров и сложности (несколько примеров сложности систем ИТЭР). Причем это мнение не только ученых из ИЯФ, но и серьезных американских ученых, опубликованное в авторитетных журналах.

Пока впрочем успехи ГДЛ привели к новым предложениям по установкам только в самом ИЯФ. Выиграв грант Минобрнауки в 650 млн рублей, институт построит несколько инженерных стендов,в рамках перспективного ректора "ГДМЛ-U", объединяющего идеи и достижения ГДЛ и способ улучшения продольного удержания ГОЛ. Хотя под влиянием новых результатов образ ГДМЛ меняется, но она остается магистральной идеей в области открытых ловушек.

Где находятся текущие и будущие разработки по сравнению с конкурентами? Токамаки, как известно, достигли значения Q=1, решили множество инженерных проблем, перешлю к строительству ядерных, а не электрических установок  и уверено движутся к уже скорее прообразу энергетического реактора с Q=10 и термоядерной мощностью до 700 МВт (ИТЭР). Стеллараторы, отстающие на пару шагов переходят от изучения принципиальной физики и решению инженерных проблем при Q=0.1, но пока не рискуют заходить на поле истинно ядерных установок с термоядерным горением трития. ГДМЛ-U могла бы быть похожа на стелларатор W-7X по параметрам плазмы (будучи, однако, импульсной установкой с длительностью разряда в несколько секунд против получасовой в перспективе работы W-7X), однако за счет простой геометрии ее стоимость может быть в несколько раз меньше немецкого стелларатора.

Есть варианты использования ГДМЛ в качестве установки для исследования взаимодействия плазмы и материалов (таких установок, впрочем, довольно много в мире) и в качестве термоядерного источника нейтронов для разных целей.

Если же завтра открытые ловушки вновь станут фаворитами в гонке к УТС, можно было бы рассчитывать, что за счет меньших капвложений в каждый этап, к 2050 году они догонят и перегонят токамаки, став сердцем первых термоядерных электростанций. Если только плазма не преподнесет новые неприятные сюрпризы...

http://tnenergy.livejournal.com/46396.html.

ИМХО. Повторюсь: "После того, как уважаемого академика Велихова отодвинули от дел (http://ria.ru/atomtec/20151207/1337770116.html), нападки на токамаки в целом и на ИТЭР в частности будут ожидаемо возрастать. Новосибирские пробкотроностроители начали атаку первыми. К сожалению, пока все их аргументы - чистой воды декларация. Результаты экспериментов появятся не раньше 2018 года." (http://www.termoyadu.net/index.php?topic=7.msg2958#msg2958).
И ещё. "У термояда (у управляемого термоядерного синтеза) нет шансов вообще. По одной простой причине: его (высокотемпературного, термоядерного синтеза) нет в Природе. Поэтому все попытки осуществить оный в тех или иных установках и реакторах априори обречены на провал. Как было сказано постом выше, "вакханалию со строительством различных реакторов, предназначенных для осуществления УТС, можно остановить лишь прекращением бюджетного финансирования. По-другому не получится и лишь тогда придёт осознание (и доказательства!) того, что термоядерного синтеза нет в Природе, он миф!"" (http://www.termoyadu.net/index.php?topic=7.msg2974#msg2974).
« Последнее редактирование: 14 Март 2016, 12:39:37 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2076


Просмотр профиля
« Ответ #102 : 19 Март 2016, 15:21:56 »

Термоядерного синтеза нет в Природе и он невозможен, однако потуги по его осуществлению продолжаются...
Калифорнийская компания сообщила об успехах в термоядерной энергетике

Компания Tri Alpha Energy из индустриального парка, расположенного к югу от Лос-Анджелеса (штат Калифорния, США) сообщила о своих успехах в термоядерной энергетике. Фирма построила машину, формирующую шар из газа, нагретого до температуры в десять миллионов градусов Цельсия, и удерживающую его в устойчивом состоянии в течение пяти миллисекунд. Об этом сообщает Science News.

Ученые финансируемой из частных источников компании Tri Alpha Energy надеются, что если они сумеют увеличить температуру шара и время его поддержания в стационарном состоянии, им удастся осуществить реакцию термоядерного синтеза (объединения легких ядер в более тяжелые), сопровождающуюся высвобождением энергии.

Представители компании отметили, что затраты на их проект на порядки меньше, чем термоядерные программы строящегося Международного термоядерного экспериментального реактора во Франции (его стоимость составляет около 20 миллиардов долларов) и Национального комплекса лазерных термоядерных реакций в калифорнийском городе Ливермор (стоимостью около четырех миллиардов долларов).

В отличие от крупных проектов, Tri Alpha Energy использует иной подход в термоядерной энергетике — в реакторе компании, по замыслам ученых, должны объединяться ядра водорода и бора, а не дейтерия и трития. Это связано с тем, что бора на Земле гораздо больше, чем трития, однако использование первого приводит к температуре термоядерного синтеза, примерно в 30 раз большей, чем температура объединения ядер дейтерия и трития (около ста миллионов градусов Цельсия).

Удержать в стационарном режиме разогретый до высоких температур водородно-боровый шар ученые предлагают при помощи специальной конструкции реактора. В нем, как и во всех аналогичных устройствах, удержание плазмы осуществляется полем магнитов, которое не допускает ее соприкосновения со стенками реактора, однако используется не схема токамака или, например, стелларатора, а модель обращенной магнитной конфигурации. Последняя предполагает удержание плазмы не магнитным полем тороидальной геометрии (как в токамаке), а магнитным полем с линейной цилиндрической схемой.

В компании Tri Alpha Energy работают 150 человек. Она сотрудничает с Институтом ядерной физики СО РАН, где были произведены ускорители для ввода частиц в реактор (инжекторы). Компания занимается разработкой своего термоядерного проекта уже восемь лет.

http://lenta.ru/news/2015/08/25/trialphaenergy//.

Подробности здесь: http://geektimes.ru/post/262388/, здесь: http://tnenergy.livejournal.com/19960.html и здесь: http://topwar.ru/82357-termoyadernoe-poslezavtra.html.
Хорошее интервью с Алексеем Беклемишевым

Mar. 18th, 2016 at 4:08 PM

Внезапно наткнулся на хорошее интервью на сайте http://www.atomic-energy.ru с физиком Алексеем Беклемишевым, руководителем проекта ГДМЛ, которого я упоминал в статье про новые успехи открытых ловушек. В этом интервью он говорит про успехи Tri Alpha с точки зрения физиков, про то, почему нужно еще что-то кроме токамаков (причем гораздо более взвешено, чем многие), и какая еще польза от термоядерных установок может быть, кроме энергетической...

В конце августа мировые СМИ облетело сообщение американской компании Tri Alpha Energy, заявившей о «существенном прорыве» в разработке собственного термоядерного реактора, альтернативного самым популярным в мире токамакам. Работающие над проектом инженеры заявили, что им удалось добиться удержания раскаленной до 10 млн °C плазмы в течение 5 мс — на большее системе просто не хватило энергии.

У Tri Alpha Energy заметные русские корни: как стало известно, через одну из своих зарубежных «дочек» долей в компании владеет «Роснано». Не последнюю роль в этом проекте играют и российские ученые, так что недавний прорыв — и их заслуга. Так, сложнейшие инжекторы для установки проектируются и изготавливаются в сибирском Институте ядерной физики им. Будкера СО РАН. По словам кандидата физико-математических наук Алексея Беклемишева, участвующего в создании этих инжекторов, такая задача вряд ли по силам ученым других стран. Мы поговорили с ним о том, чем реактор Tri Alpha отличается от токамаков, как их можно использовать для получения золота и о возможностях термоядерной энергетики вообще.

Говорят, что различные варианты реакторов — токамаки, стеллараторы и так далее — это разные способы удержания плазмы, которые физики пытаются освоить для управляемого термоядерного синтеза. Чем в этом ряду выделяется проект Tri Alpha?

— И токамаки, и стеллараторы, и то решение, которое отрабатывают создатели Tri Alpha, принципиально не так уж и различаются: все они используют магнитное удержание плазмы. Плазма в них поддерживается в квазистационарном состоянии, то есть сохраняется в течение довольно долгого времени, с помощью внешнего магнитного поля.

Существенно отличаются от них импульсные системы, в которых используются сверхкороткие и сверхмощные лазерные вспышки. Там все происходит за мельчайшие доли секунды — фактически это не «горение», а серия крошечных термоядерных микровзрывов. Кроме того, существует целый спектр промежуточных вариантов.

В чем тогда главные отличия схемы, над которой работают в Tri Alpha, от более привычных нам токамаков?

— Конфигурация магнитного поля в Tri Alpha примерно такая же, как в токамаке: это замкнутые силовые линии, образующие «бублик», или тор.

Давайте вспомним, что плазма состоит из ионов и электронов. Электроны — частицы юркие и быстрые, и если они смогут «убегать» из плазмы, она станет стремительно остывать. По счастью, электроны заряжены и двигаться могут только по силовым линиям магнитного поля. Поэтому классический подход к удержанию электронов состоит в том, чтобы замкнуть линии магнитного поля в тор. Так это реализовано и в токамаках, и в стеллараторах, и в системах с обращенным полем — таких, как в Tri Alpha.

Однако если в токамаке это поле формируют сложные системы из сверхпроводящих магнитов, сердечников и обмоток, то здесь этот тороидальный сгусток образуется прямо внутри небольшого плазменного «облака». Это решение дает основное преимущество Tri Alpha — преимущество компактных размеров. Если мощный токамак, такой, как строящийся ITER, формирует тороидальный сгусток размерами с дом, то установка Tri Alpha в самом масштабном своем исполнении создает плазменный тор радиусом около двух метров.

Системы с обращенным магнитным полем более компактны, дешевы, а потенциально и более эффективны, чем токамаки. Теория предсказывает, что в токамаках некоторые перспективные термоядерные топливные циклы нереализуемы в принципе по целому ряду причин. Горения дейтериево-тритиевой (D-T) плазмы в них добиться можно, а вот дейтериево-дейтериевое (D-D) топливо, а тем более протон-бор-11 (p-B) в токамаке использовать нельзя.

Эти виды топлива намного выгоднее с точки зрения и выхода энергии, и экологии, и других факторов. Но они требуют намного большей эффективности удержания плазмы магнитным полем, чем это доступно токамакам. Однако в некоторых альтернативных системах, в том числе с обращенным полем, удержание плазмы может достигать нужного уровня. Отсюда и надежды, которые связываются с такими проектами, как Tri Alpha.

Какую же роль во всем этом играют инжекторы, разработкой которых заняты вы с коллегами?

— Роль их огромна, причем нужны они для реакторов любых типов, будь то токамак ITER или Tri Alpha. Во-первых, чтобы термоядерная реакция пошла, плазму надо нагреть. Во-вторых, некоторые потери частиц из нее в любом случае неизбежны, и недостаток нужно постоянно восполнять. В-третьих, что особенно важно для тороидальных систем, с помощью инжекции в плазме можно поддерживать электрический ток. Для всего этого и нужны инжекторы: их задача — «впрыскивать» внутрь плазмы заранее подготовленные и разогретые частицы.

Сделать это непросто, ведь мы вынуждены ограничивать плазму магнитным полем, чтобы не выпускать частицы наружу. Но оно же не впускает другие частицы и внутрь плазмы. Поэтому мы должны «закидывать» их в плазму в виде нейтральных атомов, которые на магнитное поле практически не реагируют, и уже затем превращать атомы в ионы. Причем подавать их приходится на достаточно большой скорости, чтобы атомы успели достичь центральных областей плазмы прежде, чем потеряют электроны и станут ионами.

Для больших реакторов, таких, как токамак ITER или система Tri Alpha, требуется постоянная работа инжекторов, причем на высоких уровнях энергии. Инжекторы требуются мощные, нередко размерами они оказываются даже больше самого реактора. Кроме того, существуют инжекторы диагностические. Они используют поток быстрых атомов не для «подпитки» термоядерной реакции, а для исследования плазмы и всего, что происходит у нее внутри.

Это большая наука и высокие технологии в чистом виде. Разработка инжекторов — очень непростая техническая, технологическая и научная задача. Мы занимаемся ей как для своих установок, работающих в Новосибирске, так и для ряда международных проектов уже лет 15–20. Думаю, наша команда является мировым лидером в этой области. Поэтому одним из наших заказчиков стал и проект Tri Alpha. Причем заказчиком весьма выгодным: им требуются уникальные инжекторы, и они готовы финансировать разработку нужных для этого технологий. Получается, мы делаем свою научную работу, развиваем высокие технологии, собираем высококвалифицированные кадры и даже зарабатываем на этом хорошие деньги.

Если уж говорить о Tri Alpha, то буквально недавно СМИ пестрели сообщениями о том, что авторам проекта удалось совершить громадный и важный шаг вперед. Насколько на самом деле существенно это достижение?

— По большому счету, оно состоит в том, что команда Tri Alpha добилась результатов, которые обещала своим инвесторам. Работа этого проекта организована поэтапно, и на каждом шаге они должны достичь определенных результатов, продемонстрировать их инвесторам, подтвердить, что дела развиваются нужным образом, — и только после этого получить новое многомиллионное финансирование для следующего шага.

Соответственно, то, что мы видели недавно, — это, в общем-то, пиар-шумиха, поднятая ради того, чтобы убедить инвесторов в необходимости выделить 300 млн долларов на следующий этап работы. Впрочем, для этой шумихи есть и вполне хорошие основания.

Вспомните, мы говорили, что реактор Tri Alpha является системой с обращенным магнитным полем. Объем плазменного тора, который в ней существует, сравнительно невелик. Плазма очень быстро теряет некоторое количество частиц, остывает и распадается. И лишь недавно разработчикам Tri Alpha впервые удалось добиться стабильного существования плазменного «бублика» все то время, пока их установка работала — пока не кончилась запасенная для эксперимента энергия. При этом все параметры плазмы оставались на одном уровне.

Иначе говоря, в удержании горячей плазмы авторы Tri Alpha вышли на стационар. Можно уверенно предполагать, что и в дальнейшем, когда плазма будет нагреваться до еще более серьезных температур, которые требуются для термоядерного синтеза, им удастся удерживать плазму в этом состоянии. Это была одна из проблем, присущих всем установкам с обращенным полем, и решить ее удалось впервые. По большому счету, это действительно серьезное достижение, доказательство принципа, того, что выбранный подход может в итоге сработать.

Как мы уже говорили, токамаки ограничены довольно низкой эффективностью удержания плазмы, и в них не получится реализовывать термоядерные реакции на самых перспективных видах топлива. В Tri Alpha замахнулись на большее: теоретически они планируют получить примерно в десять раз лучшее удержание плазмы и смогут реализовать намного более «продвинутые» реакции, вплоть до протон-бор-11.

Важнейшей особенностью этой реакции является то, что ее энергия выделяется в виде заряженных частиц и гамма-квантов, которые, в отличие от нейтронного излучения, легко экранировать. Отсюда и уникальное предложение Tri Alpha: «чистый термояд», энергия без нейтронов и без радиоактивности. Однако есть и фундаментальная трудность реализации такого подхода. Это требуемая температура: если «дейтериевый» термоядерный синтез эффективно работает при температуре плазмы 100–300 млн градусов, то для протон-бор-11 температура нужна раз в 20 выше. Огромные температуры заставляют плазму активно излучать, и практически всю свою энергию она быстро теряет в форме рентгеновского излучения. Такая плазма не сможет самостоятельно гореть, ее надо постоянно подпитывать энергией извне, в частности с помощью инжекторов.

Вообще выделение энергии — это совершенно отдельный и важный разговор. Дело в том, что в термоядерных реакциях оно происходит в большей степени в виде нейтронов и всевозможных видов ионизирующих частиц — протонов, гамма-квантов и т.п. И эта энергия, конечно, опасна и для работающих тут людей, и для оборудования...

На эксперименты с дейтериево-тритиевой плазмой даже физики идут очень неохотно. Лет 20 назад такие опыты проводились в США, после чего токамак пришлось разобрать и захоронить: он стал радиоактивным, и использовать его дальше было слишком опасно. Токамак JET в Великобритании короткое время работал с тритием, после чего надолго останавливался на обслуживание. Чтобы реально получить термоядерный выход энергии больше, чем затраты, нужны установки со сложной и дорогой защитой.

Поэтому, когда токамак ITER, который сейчас возводится во Франции, перейдет на «тритиевую программу» работы, он будет полностью переведен на автоматизированное обслуживание. Вокруг установки останутся только роботы, которые будут выполнять все нужные работы. И даже при этом для ITER разрабатывается специальное защитное «одеяло», которое укроет всю установку и будет задерживать радиацию и нейтроны.

По-вашему, какой именно тип реакторов в итоге «победит» и будет использоваться в будущей термоядерной энергетике?

— Думаю, реактор ITER в итоге заработает примерно так, как и задумали его разработчики, и в нужный срок выйдет даже на запланированный уровень мощности. Проблема тут не в физике, а в экономике: даже когда ITER заработает, сам по себе он мало кому будет нужен. Иначе говоря, управляемую термоядерную реакцию получить удастся — но это еще слишком мало даст в плане коммерческого использования термоядерной энергии. Участники ITER это понимают и сами, поэтому после него задуман уже новый и еще более громадный проект DEMO, задачей которого будет демонстрация экономически оправданной схемы термоядерной электростанции.

Такие электростанции на основе токамаков смогут вырабатывать несколько гигаватт энергии (как современные крупные АЭС и ГЭС. — РП.). Это будут огромные, сложнейшие в проектировании, возведении и управлении инженерные системы, на порядки сложнее атомных электростанций. Такой масштаб не каждой стране по плечу, да и не всем он нужен.

В общем, мы получим довольно ограниченные возможности использования при не самом дешевом электричестве. Поэтому мне кажется, что хотя от ITER вполне стоит ждать успеха, но история токамаков как источников энергии на этом может и закончиться. Если только не найдется какая-то иная реализация этой концепции.

Но тогда неясным получается вообще смысл работ в области управляемого термоядерного синтеза. Зачем учиться управлять плазмой, если мы получаем дорогую и «радиоактивную» энергию?

— На самом деле энергия — это далеко не единственная область потенциального применения для управляемого «термояда». Даже опасные нейтроны, вылетающие в результате реакции, чрезвычайно ценны для некоторых областей. Фактически стоимость этих быстрых нейтронов намного превышает стоимость золота.

Если на их пути поставить определенную мишень, то с их помощью можно проводить «трансмутацию элементов» в мишени — в промышленных масштабах реализовать мечту алхимиков о превращении одних веществ в другие. Говоря современным языком, мы можем получать одни нужные нам изотопы или уничтожать другие, вредные и опасные.

Перспективы создания такой установки для «дожигания» радиоактивных отходов радиоактивных производств вполне близки. Если до термоядерной энергетики ждать еще придется, думаю, полвека, то «дожигатель» наверняка появится лет через 10. Подсчитано, что такая установка будет экономически и практически оправдана, когда эффективность превращения в нейтроны энергии, подаваемой на термоядерный реактор, достигнет хотя бы 10%. И эта планка уже маячит перед разработчиками довольно недалеко.

Следом может появиться система, которая называется «наработчик топлива». Для нее требуется уже примерно 50% эффективности превращения энергии в нейтроны. Здесь мы сможем получать важные изотопы практически в промышленных количествах — нарабатывать ценное ядерное топливо, превращая торий в смесь изотопов с ураном-233.

Кроме того, сейчас активно продвигается концепция гибридных ядерно-термоядерных реакторов, большим сторонником которой является глава совета ITER академик Евгений Павлович Велихов. Подразумевается, что термоядерная установка будет вырабатывать нейтроны, а те будут питать высокоэффективный и безопасный ядерный реактор на быстрых нейтронах.

По вашим словам, у разработчиков Tri Alpha спланирован каждый этап их будущих работ. А есть у этого плана какой-то обозримый финал? Когда можно ждать обещанного «чистого термояда»?

— Проблема Tri Alpha не только в реакторе и удержании плазмы. Требуется решить еще невероятное количество научных и технических проблем. Нужно найти высокоэффективный способ превращать выделяющееся в реакторе рентгеновское излучение в электричество. Требуется довести энергоэффективность каждого элемента системы до максимально возможной — кстати, инжекторов это касается особенно. В настоящее время ведутся исследования с целью добиться КПД «от розетки» под 85 и даже 90%.

Что же до планов Tri Alpha, то нужно вспомнить, что добиться стационарного состояния им удалось только сейчас. В прошлом эксперименты проходили не столь удачно, и параметры плазмы были откровенно низкими. Она распадалась слишком быстро. В конструкцию экспериментальной установки было внесено множество изменений, и им удалось реализовать ее полный потенциал. Надеюсь, теперь Tri Alpha получит финансирование следующей установки С-3, и на ней будут стоять наши новые, более мощные инжекторы.

http://tnenergy.livejournal.com/47784.html,
http://www.atomic-energy.ru/interviews/2015/09/14/59720,
http://topwar.ru/82357-termoyadernoe-poslezavtra.html.
« Последнее редактирование: 19 Март 2016, 20:57:33 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2076


Просмотр профиля
« Ответ #103 : 03 Апрель 2016, 08:43:39 »

Термоядерного синтеза нет в Природе и он невозможен, однако потуги по его осуществлению продолжаются...

Почему до сих пор нет термояда?

Морозов Александр Гавриилович (moralg)
2016-02-06 15:43:00

      Очередное сообщение: "Физики в Китае на термоядерном реакторе EAST получили рекордную для аналогичных установок температуру в 49,99 миллиона градусов по Цельсию (какая суперточность!!!). Разогретое до рекордных для токамаков температур вещество удалось удержать в равновесном состоянии в течение 102 секунд. Китайские физики отмечают, что на реакторах в Европе и Японии физики получали такие же высокие температуры, но не решались их поддерживать дольше минуты из-за опасений расплавления установки."

      Спрашивается - почему до сих пор никому не удалось получить самоподдерживающуюся термоядерную реакцию и положительный выход энергии из токамака? Об этом ни в первоисточниках, ни в сообщениях СМИ ничего не говорится. Не говорится потому, что самим экспериментаторам давно все понятно, а широкой публике серьезные проблемы показывать не положено.
      
      Восполню эту недоработку СМИ и дам краткий ответ на эту загадку под катом.

      Температура - это мера кинетической энергии частиц. Она должна быть высокой для того, чтобы заряженные частицы могли преодолеть потенциальную энергию взаимного электростатического отталкивания и войти в зону взаимного притяжения силами ядерного (сильного) взаимодействия. Но только высокой температуры плазмы и достаточно длительного ее удержания недостаточно для поддержания термоядерной реакции. Нужна еще и достаточно высокая плотность этой плазмы. Ибо очевидно, что в очень разреженной плазме составляющие ее частицы (дейтерий, тритий) будут чрезвычайно редко сталкиваться и сливаться в ядра гелия.
      
      Общие условия поджига самоподдерживающейся термоядерной реакции сформулировал Лоусон (1957). Но поскольку его формулы ненаглядны, посмотрим на его выводы в графической форме на плоскости параметров Т (температуры) по горизонтали и произведения числа частиц в кубическом сантиметре на время удержания плазмы в секундах по вертикали.

      На приведенном рисунке выше сплошных кривых - зона параметров самоподдерживающейся реакции D + T => He + n, а выше пунктирных кривых - зона параметров самоподдерживающейся реакции D + D => He. На графике приведены по две кривые каждого типа для КПД = 1/3 и КПД = 1/10 (КПД надо понимать в обычном смысле).
      
      Таким образом, когда китайцы и другие экспериментаторы говорят о том, что они достигли нужной для термояда температуры плазмы и довольно долго ее поддерживали, то они говорят не все. Они умалчивают о том, что плотность их плазмы была явно недостаточной для поджига самоподдерживающейся термоядерной реакции.
      
      Когда же нам ждать реального термояда? Думаю, что не раньше, чем через 5-10 лет после запуска в эксплуатацию токамака ITER, строящегося международным консорциумом на юге Франции.

http://moralg.livejournal.com/616167.html,
http://www.atomic-energy.ru/news/2016/02/09/63192,
http://www.atomic-energy.ru/news/2016/02/10/63247,
http://www.termoyadu.net/index.php?topic=7.msg2778#msg2778.

ИМХО. "Таким образом, когда китайцы и другие экспериментаторы говорят о том, что они достигли нужной для термояда температуры плазмы и довольно долго ее поддерживали, то они говорят не все. Они умалчивают о том, что плотность их плазмы была явно недостаточной для поджига самоподдерживающейся термоядерной реакции.".
Примерно об этом говорилось и на страницах этого форума ещё девять лет тому назад:
"Поэтому мы еще раз заявляем, что достижение китайцев – фикция, а
проект ИТЭР – утопия, поскольку выигрыш в устойчивости плазмы,
достигаемый за счет увеличения размера ТОКАМАКа, практически
сводится на «нет» неустойчивостью высокотемпературной,
концентрированной плазмы как таковой.":
http://www.termoyadu.net/index.php?topic=7.msg113#msg113.

P.S. О корейском ТОКАМАКе KSTAR:
Цитировать
Эта полностью сверхпроводящая машина была введена в строй в 2008 году, имеет диаметр вакуумной камеры 3,6 метра и магнитное поле в центре плазменного шнура в 3,5Т. KSTAR сравним с крупнейшими действующими в разных странах токамаками мира - D-IIID (США), ASDEX-U (Германия), EAST (Китай) и лебединой песней СССР - T-15, уступая только французкому Tore Supra, японскому JT-60 (оба сейчас проходят апгрейд) и общеевропейскому JET.
http://tnenergy.livejournal.com/42111.html.
« Последнее редактирование: 03 Апрель 2016, 19:42:41 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2076


Просмотр профиля
« Ответ #104 : 19 Апрель 2016, 07:45:39 »

Термоядерного синтеза нет в Природе и он невозможен, однако потуги по его осуществлению продолжаются...
Чубайс предсказал появление атомной энергетики без радиации

Председатель правления «Роснано» Анатолий Чубайс предсказал появление атомной энергетики без радиации, которая революционно изменит отрасль генерации. Об этом он заявил на открытой лекции «Технологическое предпринимательство и глобальные технологические тренды».

«Я отношусь к тому небольшому количеству странных людей, которые считают, что эта история (термоядерный синтез. — RNS) более чем серьезная», — сказал Чубайс. По его словам, «Роснано» участвует в калифорнийском проекте Tri Alpha, который разрабатывает установку для термоядерного синтеза на основе коллайдера. Успешная реализация этого проекта может привести «к появлению нового вида энергетики — атомной энергетики без радиации вообще и с качественно другми параметрами», считает Чубайс. «Если это "полетит", это переворот в генерации такого революционного масштаба», — сказал он.

http://www.atomic-energy.ru/news/2016/04/13/65003.

В дополнение...
Технотренды от Чубайса: солнце, постоянный ток и термоядерный синтез
http://www.atomic-energy.ru/news/2016/04/12/64973.

Другие новости...
- Германия может полностью перейти на возобновляемые источники энергии
http://www.gazeta.ru/business/news/2016/05/16/n_8639933.shtml.
- В Англии находится крупнейший в мире (из ныне действующих) токамак JET, на котором в свое время были получены рекорды энерговыделения дейтерий-тритиевого горения. Сегодня он уже слегка устарел морально, но, тем не менее, продолжает в ежедневном режиме исследовать термоядерную плазму, и он остается единственной в мире установкой в области УТС, где возможна работа с тритием, а значит с реально горящей плазмой и нейтронной термоядерной физикой. Очередная серия экспериментов с тритием запланирована на 2017-2018 годы... http://tnenergy.livejournal.com/59390.html.
« Последнее редактирование: 21 Май 2016, 07:10:22 от Avtor » Записан
Страниц: 1 ... 5 6 [7] 8 9 ... 13
  Печать  
 
Перейти в:  

Частичная или полная перепечатка материалов сайта Термояду.нет
возможна только с разрешения администрации

© Ялышев Ф.Х. | Powered by SMF 1.1.21 | SMF © 2006, Simple Machines
Rambler's Top100 Рейтинг@Mail.ru