Термояду.нет  
21 Мая 2022, 11:55:35 *
Добро пожаловать, Гость. Пожалуйста, войдите или зарегистрируйтесь.

Войти
Новости: Большинство функций форума доступны только после регистрации
 
   Начало   Помощь Поиск Войти Регистрация  
Страниц: 1 ... 12 13 [14]
  Печать  
Автор Тема: Предмет обсуждения  (Прочитано 274828 раз)
Avtor
Администратор
Ветеран
*****
Сообщений: 2128


Просмотр профиля
« Ответ #195 : 18 Июня 2021, 06:52:38 »

Теперь канадцы...
General Fusion (Канада) планирует построить демонстрационную термоядерную станцию в Британии

AtomInfo.Ru, ОПУБЛИКОВАНО 17.06.2021

Компания "General Fusion" (Канада) планирует построить демонстрационную термоядерную станцию (Fusion Demonstration Plant, FDP) в кампусе UKAEA в Кулхэме (Британия), пишет "World Nuclear News".

Пуск демонстрационной станции ожидается в 2025 году. С её помощью канадская компания намерена открыть путь для коммерциализации технологии магнитно-инерционного синтеза (Magnetised Target Fusion, MTF).

"General Fusion" заключит с UKAEA договор о долгосрочной аренде участка, на котором предполагается построить станцию. Сооружение FDP начнётся в 2022 году. Объявлено, что она будет "уменьшенной до 70%" по сравнению с коммерческой станцией.

В FDP будут созданы условия для термоядерного синтеза в среде, "соответствующей энергетическим установкам", однако собственно производство электроэнергии на ней не предполагается.

Как объявлено, на FDP будет генерироваться один плазменный импульс в день и будет использоваться дейтериевое топливо. В отличие от FDP, коммерческая станция будет выдавать плазменный импульс в секунду и работать на топливе дейтерий-тритий.

UKAEA - британская правительственная организация, ответственная за развитие термоядерной энергетики. В её сферу ответственности входит токамак MAST Upgrade в Кулхэме.

Технология MTF представляет собой следующее. Водородная плазма инжектируется в сферу из жидкого металла, где сжимается и нагревается до создания условий для синтеза. Выделяющаяся в результате термоядерных реакций энергия передаётся жидкому металлу, который выносит её теплообменник или парогенератор.

Подробнее о разработках "General Fusion" - в статье на AtomInfo.Ru.: http://atominfo.ru/newst/a0460.htm.

http://atominfo.ru/newsz03/a0782.htm.

В дополнение...
- Пятна «искусственного солнца». Термоядерная энергетика
https://cont.ws/@izborskiy-club/449940.
- Это будет бомба, или Как частные стартапы пытаются приручить термоядерную энергию
 https://nplus1.ru/material/2015/09/01/private-nuclear-fusion.

P.S. Более тупой и бесперспективной установки (реактора), чем канадский "паровой молот", трудно себе и вообразить! Держится на плаву и время от времени всплывает в медийное пространство исключительно из-за финансирования и желания быть в ряду стран, занимающихся проблемой УТС (управляемого термоядерного синтеза): http://www.termoyadu.net/index.php?topic=7.msg875#msg875, http://www.termoyadu.net/index.php?topic=6.msg3191#msg3191.

P.P.S. Другое дело европейский токамак JET. На нём реально проводились эксперименты с дейтерий-тритиевой (D-T) плазмой, целью которых было достижение точки безубыточности. В своё время этого достичь не удалось (http://www.termoyadu.net/index.php?topic=7.msg2704#msg2704), однако исследователи не теряли надежды и надеются на успех в предстоящей кампании, планируемой уже в июне текущего года: https://nn.by/?c=ar&i=268878&lang=ru.

P.P.P.S. Вместе с тем эксперимент с D-T плазмой чреват повышенным потоком высокоэнергетических нейтронов, приводящих к недопустимому уровню ионизации конструкций любого токамака, в том числе и JET, и выходу его из строя, как в своё время американского токамака TFTR: https://cont.ws/@izborskiy-club/449940. Поэтому, скорее всего, июньский эксперимент на JET будет отложен.
                                                                                                                                                      Ф.Ялышев
« Последнее редактирование: 28 Июня 2021, 08:57:16 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2128


Просмотр профиля
« Ответ #196 : 13 Июля 2021, 07:56:34 »

К работе на дейтерий-тритиевой смеси готовят и наш токамак...
Во ВНИИНМ разработана базовая версия технологического тритиевого цикла для модернизации токамака в ГНЦ РФ ТРИНИТИ

ТВЭЛ, ОПУБЛИКОВАНО 12.07.2021

В рамках реализации федерального проекта "Разработка технологий управляемого термоядерного синтеза и инновационных плазменных технологий" комплексной программы "Развитие техники, технологий и научных исследований в области использования атомной энергии на период до 2024 года" (РТТН) отделением специальных неядерных материалов и изотопной продукции АО "ВНИИНМ" (входит в состав Топливной компании Росатома "ТВЭЛ") совместно со специалистами АО "ГНЦ РФ ТРИНИТИ" разработана базовая версия технологического тритиевого цикла для экспериментальной установки - модифицированного токамака с сильным полем (ТСП).

"Одной из критически важных систем инфраструктуры термоядерного реактора является технологический тритиевый цикл. Использование топливных смесей дейтерий-дейтерий в экспериментах приводит к наработке трития. Требуется очищать отработанную плазму от трития, чтобы обеспечить работоспособность экспериментальной установки модифицированного ТСП. Эту задачу реализует технологический тритиевый цикл", - рассказал об особенностях проекта начальник лаборатории отделения физики токамаков-реакторов АО "ГНЦ РФ ТРИНИТИ" Николай Родионов.

В рамках выполненной работы была разработана базовая технологическая схема тритиевого цикла с описанием основных стадий и используемого оборудования, а также проведён подтверждающий расчёт параметров процессов.

В состав цикла входят все стадии использования трития, начиная с хранения и заканчивая переработкой и концентрированием тритий-содержащих отходов. Также представлены системы по изотопному анализу газовых смесей, контролю за тритием и очистки воздуха рабочего помещения.

АО "ВНИИНМ" активно выполняет исследования и разработки в области термоядерной энергетики, однако работы по созданию тритиевого цикла не проводились с начала девяностых годов.

По всему миру насчитывается несколько десятков экспериментальных термоядерных установок. Однако только на установках JET (Великобритания) и TFTR (США) проводились испытания с применением дейтерий-тритиевой плазмы. Все остальные эксперименты проводились с использованием стабильных изотопов водорода.

Данный факт иллюстрирует всю сложность разработки и запуска токамака с применением трития.

На сегодняшний день только использование в качестве топлива дейтерий-тритиевой смеси позволяет рассчитывать на достижение режима термоядерного горения, необходимого для создания термоядерной энергетики будущего.

Кроме того, эксперименты с тритий-содержащей смесью изотопов водорода позволяют верифицировать технологические и экономические параметры будущих термоядерных установок. Поэтому работы по созданию тритиевого технологического цикла крайне важны для проводимых исследований в области термоядерного синтеза как в России, так и в мире.

"В ближайшее время планируется продолжение работ, которые будут состоять в разработке эскизного проекта, а к 2024 году полной проектной документации тритиевого комплекса. Это потребует постадийной проверки всех разрабатываемых узлов".

"Ввиду того, что на установке будет храниться и использоваться значительное по сравнению с исследовательскими объёмами количество трития, каждая стадия должна гарантировать безопасность эксплуатации. И уже к 2030 году все сделанные разработки должны воплотиться в промышленный тритиевый цикл реального токамака", - подчеркнул начальник отдела разработки технологии и оборудования для получения изотопов и изотопной продукции АО "ВНИИНМ" Александр Аникин.

http://atominfo.ru/newsz03/a0856.htm,
https://strana-rosatom.ru/2021/07/20/vo-vniinm-razrabotali-tehnologiju-ochi/.

В дополнение...
- На старт, внимание, термояд ТРИНИТИ
https://m.facebook.com/stranarosatom/posts/2502632116699079.
-- К 2030 году в Троицке планируют построить новый термоядерный реактор
https://strana-rosatom.ru/2021/02/08/k-2030-godu-v-troicke-planirujut-postroit/.

P.S. Повторюсь. Работа на D-T смеси сопровождается повышенным потоком высокоэнергетических нейтронов, приводящих к недопустимому уровню ионизации конструкций токамака и выходу его из строя, как в своё время американского токамака TFTR: https://cont.ws/@izborskiy-club/449940. Поэтому эксперимент с D-T плазмой на отечественном токамаке будет, скорее всего, постоянно откладываться, как и эксперименты на JET: https://www.iter.org/multilingual/rf/2/59, https://nn.by/?c=ar&i=268878&lang=ru, https://se7en.ws/termoyadernyj-sintez-vse-realnee-mast-east-i-iter-dejterij-tritievye-eksperimenty-jet-dlya-iter-i-drugie-dostizheniya/.
« Последнее редактирование: 21 Июля 2021, 17:45:18 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2128


Просмотр профиля
« Ответ #197 : 15 Июля 2021, 05:10:40 »

Термоядерный синтез все реальнее: MAST, EAST и ITER, дейтерий-тритиевые эксперименты JET для ITER и другие достижения

6 Июн в 01:56

Термоядерные реакторы существуют десятки лет, но управляемая термоядерная реакция все это время оставалась недостижимой. Она постоянно находилась в ближайшем будущем, ученые говорили: «Через 10 лет, скорее всего, мы достигнем успеха». Но проходило десять лет, и ничего не менялось — по-прежнему публиковались научно-популярные статьи, где говорилось все о том же сроке в 10 лет.

Сейчас, насколько можно судить, многое изменилось — разработчики термоядерных установок достигли действительно заметных успехов. Речь идет как о новых реакторах, так и об уже существующих. В целом, вероятность того, что управляемый термоядерный синтез станет реальностью в течение ближайших нескольких лет, достаточно высокая. Давайте оценим успехи ученых последних лет и посмотрим, что там планируется.

Модернизированный сферический токамак MAST возобновил работу

В конце мая снова начал работу сферический токамак MAST (Mega Ampere Spherical Tokamak). Камера у этой установки не очень большая — диаметр 4 метра. Последние несколько месяцев систему модифицировали, включая оптимизацию систему охлаждения плазмы до ее сброса. Возможно, этот реактор послужит прототипом для небольших, но эффективных систем будущего.

К слову, сам токамак из Британии совсем не нов — его сборка стартовала в 1997 году, а работать он начал два года спустя. Проблемой стал небольшой размер камеры — из-за этого разогретая свыше сотни млн кельвинов плазма разрушала вольфрамовые плитки.

В 2013 году команда поняла, что установку нужно модернизировать. Правительство выделило деньги, около 55 млн фунтов, и началась реконструкция. Завершена она была лишь в октябре 2020 года, после чего последовал период тестирования. Токамак подвергся многочисленным проверкам, и лишь в 2021 году его приняли в эксплуатацию.

В итоге проблемы разрушения плиток удалось избежать. А плазма теперь при сбросе понижает температуру с сотни млн °C до всего 300 °C.

В прошлом году британские физики начали работу над еще одним проектом — токамаком STEP (Spherical Tokamak for Energy Production).

Проект ITER продвигается к завершению

В прошлом году в исследовательском центре Кадараш во Франции стартовало строительство (сборка!) экспериментальной термоядерной установки ITER. Это масштабный проект, в котором принимают участие специалисты из самых разных стран, включая ЕС, Индию, Китай, Южную Корею, Россию, США и Японию.

Реактор представляет собой цилиндр диаметром 28 метров, высотой 29 метров и весом 23 000 тонн. Размещается система в железобетонном объекте с длиной 120 метров, шириной 80 метров и высотой 80 метров.

Несмотря на некоторые проблемы, проект постепенно продвигается к завершению. Через четыре года разработчики планируют получить первую плазму. В течение десяти лет ученые будут проводить эксперименты, подводя работу к главному результату — получению управляемой термоядерной реакции.

Если все пройдет хорошо, то где-то в 2035 году появятся первые коммерческие реакторы DEMO.

Этим летом (т.е. 2021 г.) проводятся эксперименты с новой смесью для термоядерного реактора ITER. Речь идет о дейтерий-тритиевой смеси, которая будет использоваться в качестве основного «топлива» для реактора”. Испытания смеси будут проходить в Великобритании на площадке JET (Joint European Torus — Объединенный европейский токамак).

Этот реактор — работающая модель ITER с размером в 1/10 от размера полномасштабной установки. Если все пройдет хорошо с JET — значит, не должно быть проблем и с его «старшим братом». Эксперименты JET позволят увидеть, как будет вести себя плазма и какие сложности могут возникнуть. В ходе испытаний ученые используют не более 60 гр трития при температуре плазмы в 150 млн К — именно такая температура требуется для старта синтеза.

У JET весьма неплохие показатели — отношение затраченной на разогрев плазмы энергии к полученной энергии составляет 0,67. Для того, чтобы получить коммерческую систему, этот коэффициент, Q, должен быть больше единицы. Для того, чтобы отбить затраты и стать экономически выгодным проектом, Q должен быть равным или превышать 25. Авторы проекта ITER считают, что его Q будет не менее 10.

EAST ставит рекорды

Как уже писали на Хабре, китайским ученым удалось побить рекорд корейцев по удержанию сверхгорячей плазмы. Команда термоядерного реактора EAST смогла добиться невиданных доселе результатов — удержания плазмы с температурой 160 млн К в течение 20 секунд. Плазму с температурой в 120 млн К они удерживали 101 секунду. Это уже очень близко к порогу термоядерного синтеза — речь идет не о долях секунды, а о десятках секунд.

Для того, чтобы началась реакция термоядерного синтеза в установке, плазму температурой в 150 млн К нужно удерживать около 300-400 секунд.

EAST — тоже токамак, отличающийся от большинства похожих конструкций наличием полностью сверхпроводящей магнитной системы на основе ниобий-титановых проводников. При этом большой радиус камеры составляет всего 1,7 метра, то есть диаметр даже меньше, чем у британской установки, о которой говорилось выше — 3,4 метра вместо 4. И проблем с разрушением вольфрамовых плиток, насколько можно судить, у китайцев нет.

Стелларатор W7-X

Кроме токамаков, есть и термоядерные установки с иной конфигурацией. Например, стеллараторы. Форма магнитной катушки таких установок как бы повторяет конфигурацию нагретой плазмы, что позволяет не бороться с плазмой, а просто использовать ее особенности.

Установка Wendelstein 7-X (W7-X) — современный стелларатор, построенный по последнему слову термоядерных технологий. Конструкция стелларатора постепенно оптимизируется, в планах создателей — обеспечить работу системы вплоть до 30 минут, что, конечно, гораздо лучше любых рекордов токамаков.

Wendelstein 7-X (W7-X) предназначен, в первую очередь, быть proof of concept, показав жизнеспособность конструкции — получать энергию с его помощью не планируется. К сожалению, из-за пандемии эксперименты с системой отложены минимум на год. Работа возобновится не ранее следующего года.

Осторожный оптимизм

Несмотря на все эти успехи, все равно не стоит считать, что термояд уже у человечества в кармане. Предстоит решить еще очень много проблем, причем в будущем могут возникнуть новые.

Тем не менее, сейчас ученые достигли немалых успехов, изучением возможностей термоядерного синтеза заняты ученые многих стран. Это уже не парочка проектов, как пару десятков лет назад. При этом регулярно появляются новые системы — как токамаки, так и альтернативы.

Китайская установка вселяет уверенность в том, что цели, которые ставят перед собой ученые, будут решены в ближайшем будущем. При этом есть надежда и на ITER с его дейтерий-тритиевым «топливом».

Если W7-X покажет хорошие результаты — кто знает, может, именно стеллараторы вырвут победу, а токамаки останутся позади.

В любом случае, термоядерный синтез привлек внимание не только ученых, но и правительств крупнейших государств мира. И вряд ли это внимание, интерес, ослабнут. Скорее наоборот — будут лишь усиливаться.

https://se7en.ws/termoyadernyj-sintez-vse-realnee-mast-east-i-iter-dejterij-tritievye-eksperimenty-jet-dlya-iter-i-drugie-dostizheniya/, https://vk.com/@etorabotaet-termoyadernyi-sintez-vse-realnee.

В дополнение...
- Британские ученые добились снижения нагрева токамака MAST
https://strana-rosatom.ru/2021/07/08/britanskie-uchenye-dobilis-snizheniya/.
- Китайская команда Alpha Ring разрабатывает "искусственное солнце" на столе
http://lenr.seplm.ru/novosti/itaiskaya-komanda-alpha-ring-razrabatyvaet-iskusstvennoe-solntse-na-stole.

P.S. Ещё раз. Ключевым в работе термоядерного реактора является достижение точки безубыточности. А это возможно лишь при использовании дейтерий-тритиевой смеси. В своё время к этой точке приблизились (не достигли, а именно только приблизились!) американский TFTR и европейский JET. "Американец" из-за повышенной ионизации конструкций реактора почил в бозе, а "европеец" до сих пор не может очухаться и повторить хотя бы достижение 25-летней давности (1997 года). На этом фоне прорывным следует считать решимость наших термоядерщиков приспособить токамак с сильным магнитным полем (ТСП) для работы на D-T смеси. Произойдёт это, конечно, не завтра, а, возможно, лишь к 2030 году: http://www.termoyadu.net/index.php?topic=6.msg3528#msg3528, https://3dnews.ru/1044075.

P.P.S. Что касается токамака JET, то на сегодняшний день он вроде бы полностью восстановился, обзавёлся ИТЭРоподобной бериллиевой стенкой и этим летом проводит активную дейтерий-тритиевую кампанию: https://ru.abcdef.wiki/wiki/Joint_European_Torus, https://www.pvsm.ru/fizika/281856. Насколько успешно проходят эксперименты с D-T смесью пока неизвестно. Ясно лишь одно: для JET наступил момент, когда отступать уже некуда и придётся снова почувствовать пагубное воздействие ионизирующего излучения при работе с D-T смесью: https://rusevik.ru/tehnologii/68543-termoyadernyy-reaktor-jet-gotovitsya-dostich-tochki-bezubytochnosti.html, https://energo.jofo.me/1853305.html.
Судьбе JET на этом форуме уделяется значительное внимание, поэтому будет жаль, если давно анонсированная D-T кампания окажется для JET заключительной и его окончательно постигнет участь американского TFTR: http://www.termoyadu.net/index.php?topic=6.msg3339#msg3339, https://nn.by/?c=ar&i=268878&lang=ru, https://cont.ws/@izborskiy-club/449940.

P.P.P.S. И последнее. Не только ионизирующее излучение конструкций реактора, вызванное потоком высокоэнергетических нейтронов при работе с D-T смесью, но и необходимость использовать тритий в соотношении 50 на 50 для достижения точки безубыточности сводит на "нет" мечты о практическом использовании термоядерных реакторов как таковых!: https://www.iter.org/multilingual/rf/2/59, https://proza.ru/2016/05/10/502.

                                                                                                                           Ф.Х.Ялышев, изобретатель,
                                                                                                                 выпускник МВТУ им.Баумана, 1971 год.
« Последнее редактирование: 10 Августа 2021, 10:36:51 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2128


Просмотр профиля
« Ответ #198 : 06 Августа 2021, 18:57:21 »

Термоядерная энергетика всё менее реальна...
Илон Маск прав: термояд не нужен. Будущее, которого у нас не будет

7/25/2021

До массовой термоядерной энергетики 20 лет — и всегда будет 20 лет. Это незатейливая шутка сама стала старой еще 20 лет назад. Общество расстраивается от того, что термояд все никак не могут вывести на промышленный уровень. И лишь Илон Маск считает, что термоядерный реактор вовсе не нужен. Внимательный анализ показывает, что он прав. Даже если все технические проблемы термоядерной энергетики чудесным образом разрешатся, у нее не будет шансов вытеснить конкурентов. Как так вышло, и что тогда спасет человечество от энергетического кризиса?

Сперва констатируем факт: на планете есть серьезный энергетический кризис. Углеродного топлива на ней достаточно, это правда. Но даже самое безопасное из них, природный газ, убивает по 4000 человек на каждый триллион выработанных киловатт-часов. Уголь, не говоря уже о биотопливе, убивает много больше — ведь при сгорании он дает больше микрометровых частиц (PM2,5). А именно они, проникая через легкие в кровь, убивают людей, вызывая тромбозы, инфаркты и инсульты, которые все мы принимаем за обычные «болезни, вызванные стрессом». В США от тепловой энергетики умирают десятки тысяч людей в год, а в мире речь идет как минимум о сотнях тысяч погибших ежегодно. Эта проблема давно и серьезно беспокоит ученых, советские академики еще в 1980-х считали отказ от тепловой энергетики неизбежным будущим — именно из этих, экологических соображений.

Современной публике эта ситуация известна мало, и вы не услышите о ней от политиков. Однако и публике, и политикам известны другие соображения, требующие отказа от углеродной энергетики – «потепленческие». По ним, глобальное потепление — катастрофа, и чтобы ее избежать, от углеродных топлив надо отказаться.

Мы уже не раз писали, что в действительности глобальное потепление снижает смертность. Например, в последнем исследовании по этой теме — на 15 тысяч человек в год только за последние 20 лет. Писали мы и о том, что антропогенные выбросы углерода привели к рекордному расцвету земной растительности и значительному росту урожаев. Но все это вовсе не означает, что с углеродным топливом не надо бороться. Тезисы советских академиков ничуть не устарели и сегодня: углеродное топливо убивает огромное количество людей каждый год, и в России — в том числе.

Так что же современная наука и технологии могут предложить, чтобы, наконец, покончить с этой невидимой войной, дающей сотни тысяч убитых ежегодно? Когда уже термоядерная энергетика выключит последнюю ТЭС? Увы, никогда.

Плюсы термояда неоспоримы…

Термоядерная энергетика с 1960-х — полвека! — обещает нам невиданные перспективы. Килограмм плутония при распаде дает 23,2 миллиона киловатт-часов (в пересчете на тепло), а килограмм дейтерия и трития в термоядерных реакторах — 93,7 миллиона киловатт-часов на килограмм. Разница – в четыре раза, что много. К тому же, воды на планете больше, чем ядерного топлива, а 1/6500 всей воды – суть дейтерий, термоядерное топливо.

Второе преимущество термоядерного реактора: при слиянии ядер атомов его топлива получается гелий и нейтрон. Нейтрон так или иначе из реактора далеко не улетит, а гелий безвреден. Какое-то количество радиоактивного трития в процессе утекает из зоны слияния ядер, но из реактора не выходит, да и радиоактивность от него, если честно, ничтожная. Полураспад трития — 12,3 года, заметно меньше, чем у типичных опасных изотопов, остающихся от распада атомов урана и плутония (это, например, нестабильные изотопы цезия). Если с отработавшим топливом АЭС ничего не делать, оно останется небезопасным тысячи лет. Отработавшее топливо термоядерного реактора будет безопасно уже через 150 лет.

Третье преимущество термоядерного реактора: в отличие от ядерного, в нем невозможна самоподдерживающаяся реакция. Без огромных усилий по поддержанию высокого давления и температуры реакция сразу остановится. Окружающее вещество реактора реакцию подпитать никак не может: там ядра атомов тяжелее дейтерия и трития. Их слияние просто не даст выделения энергии, которое могло бы расплавить активную зону (как на Фукусиме) или перегреть теплоноситель (как в Чернобыле). Явный плюс по безопасности. По крайней мере, так кажется на первый взгляд.

Увы, все эти преимущества, о которых нам рассказывали десятилетия, мягко говоря, не совсем точно описывают ситуацию. Не более, чем рассказы о грядущем переходе на «сплошную солнечную и ветровую энергетику».

…Или нет

Начнем с повышенной отдачи на единицу топлива. Бесспорно, дейтерий и тритий дают вчетверо больше энергии на килограмм топлива, но есть нюанс. Он в том, что никакого дефицита топлива нет и в ядерной энергетике — даже близко. Напомним: в России уже работает реактор, использующий плутоний. Это реактор-размножитель: в нем плутоний можно нарабатывать из обычного урана-238, получая на выходе больше делящегося топлива (плутония), чем на входе.

У одной только России уже добытого урана-238 более 700 тысяч тонн. Даже при скромном КПД в 34% из этого можно получить более 5,5 квадриллионов киловатт-часов. Это потребление всей планеты за более чем 200 лет. Надо понимать, что уже добытого урана-238 в других странах тоже довольно много. То есть, используя быстрые реакторы и не добывая никакой урановой руды вовсе, человечество сможет покрывать свои энергетические потребности многие столетия. Если же оно еще и руду будет добывать, то в ближайшие десятки тысяч лет о проблеме «нехватки топлива» следует сразу забыть. И это мы даже не затронули тот факт, что урана в морской воде много больше, чем в урановых рудах на суше.

Второе преимущество термояда — малый срок опасности его радиоактивных отходов — имеет похожую степень актуальности. Дело в том, что уже существующие быстрые реакторы типа БН-800 позволяют вовлечь в работу 95% всего отработавшего топлива. Планируемый к постройке в Сибири реактор на расплаве солей способен вовлечь в энергетический цикл еще 4%. Остается один-единственный процент — но он состоит из изотопов, которые уже через 500 лет будут иметь радиоактивность на уровне природной урановой руды.

У термояда этот срок равен 150 годам, что кажется преимуществом. Но дело в том, что для обеспечения энергией всей планеты на 500 лет вперед нужно порядка 10 миллионов тонн ядерного топлива. Один процент от этого числа — сто тысяч тонн. В силу высокой плотности ядерного топлива, это всего несколько тысяч кубометров. Если все их собрать в одном месте, то получится куб со стороной менее 20 метров. Речь идет о крайне малом объеме, который легко можно хранить прямо на открытых площадках работающих АЭС, как это, собственно, и делается с радиоактивными отходами сегодня, в прочных контейнерах.

А вот отходы термоядерной энергетики, хотя и меньшие по массе, но радикально менее плотные. Поэтому, несмотря на срок хранения в 150 лет, места на открытых площадках они займут примерно столько же, сколько и отходы ядерных реакторов.

Хорошо, но что с безопасностью? Кажется, здесь-то преимущество термояда неоспоримо: у него неконтролируемого разгона реактора быть не может?

И опять утверждение по существу верное… но опять есть нюанс. Он в том, что в современных атомных реакторах тоже не может быть никакого серьезного неконтролируемого разгона — просто в силу законов физики. Если в существующей АЭС начнется разгон реакции деления ядер, и само топливо, и теплоноситель рядом с ним нагреются. В обычном серийном реакторе тепло отводит вода — и при перегреве она закипит, резко потеряв в плотности. Но та же вода замедляет тепловые нейтроны, и если она становится менее плотной — замедление падает. Быстрые нейтроны захватываются ураном-235 намного хуже, чем медленные, — и реакция деления автоматически резко затормозится.

В быстром реакторе типа БН-800 ситуация иная. Замедлителя там нет, небольшую часть нейтронов захватывает натриевый теплоноситель. Но и он при нагреве резко теряет плотность и меняет тем самым нейтронные свойства внутри реактора. Тот опять-таки тормозится. Сам, просто в силу законов физики.

То есть, да, термоядерный реактор не может неконтролируемо разгоняться… но это не дает ему никаких преимуществ над современными АЭС, потому что они тоже не могут этого сделать.

А как же Чернобыль — почему там был неконтролируемый разгон и гибель людей? Все дело в том, что там был реактор совсем другого типа — немодернизированный РБМК. Строго говоря, сам по себе он тоже не мог неконтролируемо разогнаться. Но при проектировании допустили просчет, из-за которого замедление нейтронов в активной зоне при вводе аварийных стержней торможения росло, а не падало. Этот недостаток был известен проектировщикам, и они уведомили о нем АЭС с такими реакторами — но сделали это непонятным для обычных людей языком, отчего и случился Чернобыль.

Но у сегодняшних реакторов такая ситуация невозможна по чисто физическим причинам: они исходно спроектированы так, что нажатие педали «ядерного тормоза» не ведет к их разгону, как это было с РБМК.

Подведем итоги. Все три теоретических преимущества термоядерных реакторов — избыток топлива, решение проблемы радиоактивных отходов и безопасность — уже решены для атомных реакторов. Более того, как мы покажем ниже, это далеко не все.

Почему ядерные реакторы будут лучше термоядерных и через полвека?

Ключевая проблема термояда заключается в том, что он экономически не сможет конкурировать с АЭС — скорее всего, никогда.

Все дело в том, что для слияния ядер атомов им нужно преодолеть кулоновский барьер. В центре Солнца это делать просто: кругом десятки миллионов градусов и огромное давление. В термоядерном реакторе такого давления нет и нужно компенсировать это дополнительным нагревом — минимум до ста миллионов градусов. Жарче, чем в центре Солнца, и в тысячи раз жарче, чем на его поверхности.

Термоядерный реактор нагревает плазму с дейтерием и тритием до таких температур, удерживая ее сильнейшим магнитным полем. Сильнейшее оно потому, что если такую плазму не удержать в центре вакуумной камеры, то она повредит любой мыслимый материал — просто прожжет его.

Так вот: магнитная ловушка такого типа требует больших, сверхмощных магнитов, сделанных из сверхпроводящих материалов — и охлаждаемых жидким гелием. Установка такого удержания фантастически сложная и очень трудоемкая. В том числе и за счет нее экспериментальный термоядерный реактор ИТЭР стоит 25 миллиардов евро. Это цена шести гигаваттных реакторов Росатома — с годовой выработкой в полсотни миллиардов киловатт-часов. Что, напомним, равно одной двадцатой энергопотребления такой страны, как Россия.

А вот у ИТЭР мощность совсем не полдюжины гигаватт, а лишь 500 «тепловых» мегаватт. Причем реактор экспериментальный — он не может выдать ее постоянно, только во время коротких импульсов. Да и его энергозатраты в режиме нагрева могут превышать 700 мегаватт, что больше, чем возможная энергетическая отдача.

Представим себе на секунду, что все проблемы термоядерных реакторов решены, они держат плазму постоянно и не затрачивают на ее разогрев вообще нисколько энергии. Может быть, термояд станет конкурентоспособным хотя бы тогда?

Увы, нет. При существующих и перспективных типах реакторов это просто невозможно. Возьмем тот же ИТЭР: реактор там высотой 30 метров и диаметром 30 метров, мощность, напомним, всего 500 тепловых мегаватт в импульсе. Обычный атомный реактор БН-800 имеет высоту активной зоны меньше метра, а диаметр порядка 2,5 метра. При этом его постоянная (а не импульсная) тепловая мощность — более 2000 мегаватт. Кстати, будущие термоядерные реакторы будут еще крупнее ИТЭР. Ясно, что здание вокруг ИТЭР (и его преемников) нужно радикально крупнее и дороже, чем вокруг БН-800 (и это так и есть на практике).

Кроме этого в стоимость термоядерного реактора надо включить большую вакуумную камеру (в которой атомный реактор не нуждается). И огромный набор сверхпроводящих магнитов с охлажденным жидким гелием. Легко понять, что при их учете экономически сравнивать термоядерные и ядерные электростанции довольно сложно.

Отдельно оговоримся: все это остается верным при любых изменениях в ценах на дейтерий, тритий, уран или плутоний. Дело в том, что даже у АЭС доля цены топлива в итоговом киловатт-часе — всего 5%. Мыслимые изменения этой цены, таким образом, на стоимость электричества почти не влияют. Больше всего влияют капиталовложения при строительстве — и они у термоядерных реакторов намного выше. И останутся выше во всем обозримом будущем.

Причина — все в той же физике. Чтобы запустить атомный реактор, достаточно просто поднести друг к другу стержни с плутонием-239 или ураном-235. Нейтроны, которые их атомы испускают спонтанно, сами запустят цепную реакцию деления ядер. Чтобы запустить термоядерный — нужна многометровая вакуумная камера с сотней миллионов градусов в ее центре. Нет никаких путей развития, которые позволили бы такому сооружению иметь ту же цену, что небольшая (2х1 метр) емкость с натрием — безо всякого вакуума, и с температурами заведомо ниже одной тысячи градусов.

Основная часть стоимости и АЭС, и термоядерных электростанций — это капиталовложения. И у последних они всегда будут много выше, чем у АЭС. А это заведомо перекрывает любую экономию из-за меньшей массы потребляемого топлива.

Следует отдельно пояснить: несмотря на все сказанное, ИТЭР — замечательный научный проект, что-то типа Большого адронного коллайдера. Да, он дорог, но позволяет больше узнать о контроле над высокотемпературной плазмой, что рано или поздно может пригодиться и в совсем иных областях. Просто не стоит ждать от него будущего энергетического изобилия: за термоядерными реакторами нет такого греха, как низкие цены...

https://pulse.mail.ru/article/ilon-mask-prav-termoyad-ne-nuzhen-buduschee-kotorogo-u-nas-ne-budet-2157844836469413649-1439997417175552575/, https://naked-science.ru/article/nakedscience/noneedforfusion.

P.S. Илон Маск не "открыл Америку". То, что термояд не нужен, говорится давно, в том числе и на страницах данного форума: см. статью "Кому нужна термоядерная энергетика?": http://www.termoyadu.net/index.php?topic=6.msg2768#msg2768.
Просто инерция и желание попилить бюджетное бабло не дают возможности отказаться от этого тупикового (ошибочного!) направления в ядерной энергетике, давно создавшего себе ореол (иллюзию, миф!) переднего края науки: http://www.termoyadu.net/index.php?topic=682.msg2297#msg2297.

P.P.S. Впрочем, у термоядерщиков МИФИ другое мнение: https://mephi.ru/press/news/17910.
                                                                                                                                                               Ф.Ялышев
« Последнее редактирование: 14 Октября 2021, 02:20:33 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2128


Просмотр профиля
« Ответ #199 : 21 Августа 2021, 18:56:32 »

Лазерный термояд снова в фаворе...
Американцы оказались в шаге от создания искусственного Солнца — учёные почти достигли самоподдерживающейся термоядерной реакции

19.08.2021 [10:07],  Геннадий Детинич

Учёные из Национального комплекса лазерных термоядерных реакций США (National Ignition Facility, NIF) при Ливерморской национальной лаборатории имени Лоуренса сообщили о рекордной мощности выхода энергии в процессе термоядерной реакции. Новый поджиг произвёл в 25 раз больше энергии, чем в ходе предыдущего эксперимента. Это выводит исследователей на порог, следующий шаг с которого обещает зажечь на Земле искусственное солнце.

Комплекс NIF занимает площадь трёх футбольных полей. На его территории размещены 192 мощных лазера, сфокусированных в одну точку в центре рабочей камеры. Таблетка топлива из изотопов водорода дейтерия и трития диаметром несколько миллиметров помещается в фокус и поджигается. При температуре свыше 3 млн °C топливо превращается в облако плазмы, а ударная волна сжимает его в точку диаметром с человеческий волос.

В этот момент начинается слияние атомов водорода с синтезом атомов гелия и высвобождается колоссальный объём энергии.

По предварительным оценкам, а опыт ещё ожидает рецензирование в научном мире, в ходе реакции выделилось 1,3 мегаджоуля энергии. Это примерно 70 % от затраченной на поджиг топлива энергии. Это тот порог, уверены учёные, следующий шаг за который приведёт к самоподдерживающей термоядерной реакции.

К полученному результату исследователи из NIF шли около десяти лет и путь оказался в верном направлении.

https://3dnews.ru/1047058/amerikantsi-okazalis-v-shage-ot-sozdaniya-iskusstvennogo-solntsa-uchyonie-pochti-dostigli-samopoddergivayushcheysya-termoyadernoy-reaktsii?from=related-grid&from-source=1044075.

В дополнение...
- Новый экспериментальный результат получен на комплексе NIF
http://atominfo.ru/newsz03/a0954.htm.
- Американские ученые почти зажгли «искусственное Солнце»
https://topcor.ru/21219-amerikanskie-uchenye-pochti-zazhgli-iskusstvennoe-solnce.html.
- Ученые из Ливерморской национальной лаборатории Лоуренса (США) сделали «революционный» шаг к созданию устойчивого термоядерного синтеза: https://mir24.tv/news/16471834/eksperiment-uchenyh-iz-ssha-priblizil-mir-k-revolyucii-yadernogo-sinteza.

P.S. В своё время американцы чуть было не прикрыли финансирование работ по лазерному термояду (http://www.termoyadu.net/index.php?topic=6.msg2629#msg2629), но, видимо, учитывая, что в РФ, в Сарове, тоже создаётся подобный комплекс (http://www.termoyadu.net/index.php?topic=6.msg3490#msg3490, https://strana-rosatom.ru/2019/07/09/shar-dlya-superlazera/), успокоились, продолжили финансирование и якобы добились результата.

P.P.S. Главная проблема лазерного термояда - это несимметричный нагрев мишени (таблетки-шарика из замороженной DT смеси), который приводит к разрушению мишени до достижения необходимых температур и давлений: http://www.termoyadu.net/index.php?topic=6.msg3216#msg3216. Насколько корректно разрешена эта проблема в новых экспериментах предстоит ещё выяснить, или, как сказано в заключении статьи, "опыт ещё ожидает рецензирование в научном мире".

P.P.P.S. Для справки. "Комплекс NIF, построенный в 2009 году, является лазерным термоядерным комплексом двойного назначения. Предполагается, что зажигание термоядерной реакции на комплексе будет происходить за счёт концентрации на мишени лазерных пучков. Первая такая реакция должна была быть осуществлена в 2012 году, однако до сих пор этого не произошло.": http://atominfo.ru/newsz03/a0954.htm.
Для сравнения. Саровский NIF будет в 1,5 раза мощнее американского. Правда, не сейчас, а лишь к 2027 году: https://strana-rosatom.ru/2021/08/24/yadernyj-centr-v-sarove-narastit-dolju-g/.
                                                                                                                                                   Ф.Ялышев

Оглядываясь назад...
- Спираль «звездной» энергетики
http://energyua.com/849-0.html.

Текущие новости...
- Демонстратор компактного термоядерного реактора в Великобритании построят к 2025 году
https://3dnews.ru/1046697/demonstrator-kompaktnogo-termoyadernogo-reaktora-v-velikobritanii-postroyat-k-2025-godu?from=related-grid&from-source=1044075.
-- Предыстория здесь: http://www.termoyadu.net/index.php?topic=6.msg3521#msg3521.
- В США создали сильнейший магнит в мире, что обещает прорыв в области термоядерных реакторов
https://3dnews.ru/1048656/v-ssha-sozdali-silneyshiy-magnit-v-mire-chto-obeshchaet-proriv-v-oblasti-termoyadernih-reaktorov?from=related-grid&from-source=1048741.
- В Сочи прошла XIX Всероссийская конференция Диагностика высокотемпературной плазмы
http://atominfo.ru/newsz04/a0119.htm.
« Последнее редактирование: 29 Января 2022, 11:17:17 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2128


Просмотр профиля
« Ответ #200 : 05 Октября 2021, 18:14:21 »

Термояд на основе токамаков...
Учёные предприятия Росатома сделали ещё один шаг к получению энергии на основе термоядерного синтеза

Пресс-служба АО Наука и инновации, ОПУБЛИКОВАНО 05.10.2021

Впервые на токамаке Т-11М в АО "ГНЦ РФ ТРИНИТИ" (входит в научный дивизион госкорпорации "Росатом" - АО "Наука и инновации") осуществлена внешняя дозаправка жидким литием его эмиттерной системы в условиях непрерывного рабочего цикла токамака.

В ходе совместных испытаний инженерам отделения физики токамаков-реакторов АО "ГНЦ РФ ТРИНИТИ" и специалистам АО "Красная Звезда" впервые удалось осуществить внешнюю дозаправку эмиттерной системы токамака Т-11М литием без нарушения вакуумных условий в его рабочей камере.

В институте уже несколько лет разрабатывают и испытывают перспективные конструкции и технологии первой стенки и дивертора для термоядерных реакторов, включая жидкометаллические.

Цель - ослабить разрушительное воздействие горячей плазмы на внутрикамерные элементы, увеличивая тем самым их эксплуатационный ресурс.

"Реализация системы заполнения эмиттера лития литием без извлечения его из вакуумной камеры открывает возможности для осуществления литиевой защиты первой стенки токамака в квазистационарном режиме. Новая технология найдет своё применение, прежде всего, на недавно созданном в НИЦ "Курчатовский институт" токамаке Т-15МД и в дальнейшем приблизит учёных к успешным экспериментам по генерации чистой и безопасной энергии", - отметил генеральный директор ГНЦ РФ ТРИНИТИ Дмитрий Марков.

Литиевая защита первой стенки рабочей камеры токамака-реактора от агрессивного воздействия горячей термоядерной плазмы путем переизлучения теплового потока (аналог динамической защиты танковой брони) уверенно зарекомендовала себя в исследованиях по управляемому термоядерному синтезу в последние 25 лет.

Именно с её использованием на токамаках TFTR (США) и EAST (КНР) связывают получение рекордных результатов - 12 МВт термоядерного DT-синтеза (TFTR) и 100 секундного разрядного импульса в условиях плазмы с термоядерными температурами (EAST).

Дальнейшие модификации данной технологии предполагается использовать в квазистационарных термоядерных источниках нейтронов.

http://atominfo.ru/newsz04/a0138.htm.

Как напоминание...
- ТОКАМАК – несекретные материалы
http://old.journal.spbu.ru/2000/30/11.html.
-- Термоядерный реактор JET тестирует покрытие, открывающее путь к термояду
http://www.physmech.ru/modules.php?name=News&file=article&sid=649.
--- Всё о токамаке JET: https://www.atomic-energy.ru/JET.
- Российские физики рассказали о приручении термоядерного синтеза  
http://www.sib-science.info/ru/institutes/rossiyskie-fiziki-rasskazali-02022021.

P.S. Чуть ранее сообщалось, что во ВНИИНМ разработана базовая версия технологического тритиевого цикла для модернизации токамака в ГНЦ РФ ТРИНИТИ: http://www.termoyadu.net/index.php?topic=6.msg3528#msg3528. Сумеет ли токамак Т-11М подступиться к работе на D-T плазме покажет время, но к настоящему времени это невозможно. Дело в том, что работа на D-T смеси сопровождается повышенным потоком высокоэнергетических нейтронов, приводящих к недопустимому уровню ионизации конструкций токамака и выходу его из строя, как в своё время американского токамака TFTR: https://cont.ws/@izborskiy-club/449940, https://www.rulit.me/books/gazeta-zavtra-48-1200-2016-read-458856-25.html. Поэтому эксперимент с D-T плазмой на модернизированном отечественном токамаке будет, скорее всего, постоянно откладываться, как и эксперименты на модернизированном JET: https://www.iter.org/multilingual/rf/2/59, https://nn.by/?c=ar&i=268878&lang=ru, https://se7en.ws/termoyadernyj-sintez-vse-realnee-mast-east-i-iter-dejterij-tritievye-eksperimenty-jet-dlya-iter-i-drugie-dostizheniya/, https://m.nashaniva.com/ru/articles/268878/?mo=0c3892cf9b3e9d9c2b372ce21fc9a8982445a715.

P.P.S. Вон, обещанный "этим летом" эксперимент с D-T плазмой на европейском токамаке JET, похоже, так и не состоялся. Во всяком случае в СМИ эта информация была обойдена стороной: http://www.termoyadu.net/index.php?topic=6.msg3529#msg3529. Впрочем, кто будучи в здравом уме рискнёт проводить эксперименты с D-T смесью, памятуя о том, что это чревато выходом из строя энергетической установки. Печальный опыт с TFTR (да и с JET!) не остался забытым: https://www.rulit.me/books/gazeta-zavtra-48-1200-2016-read-458856-28.html.

P.P.P.S. Тем не менее Западный частный капитал верит в термояд. В мире не менее 35 компаний ведут разработки в области синтеза. Из этого числа 18 компаний получили в общей сложности 1,8 миллиарда долларов из частных источников: http://atominfo.ru/newsz04/a0246.htm, https://www.atomic-energy.ru/news/2021/11/01/119056.

                                                                                                                         Ф.Х.Ялышев, изобретатель,
                                                                                                                 выпускник МВТУ им.Баумана, 1971 год.


Другие новости...
- Китайский термоядерный реактор CFETR зажжет искусственное солнце через 10 лет
https://shraibikus.com/1136683-568521136683.html?utm_source=yxnews&utm_medium=desktop.
-- Китай планирует создать токамак с рекордной температурой плазмы (через 10 лет!)
https://www.atomic-energy.ru/news/2021/10/07/118198.
--- Предыстория здесь: http://www.termoyadu.net/index.php?topic=6.msg3489#msg3489.
- На южнокорейском термоядерном реакторе KSTAR установлен новый 30-секундный рекорд по времени удержания плазмы: https://www.atomic-energy.ru/news/2021/11/29/119753.
- Бостонский термоядерный стартап Commonwealth Fusion Systems привлек рекордные 1,8 миллиарда долларов от Google, Билла Гейтса и других инвесторов: https://www.atomic-energy.ru/news/2021/12/02/119901.
- Новая разработка ИЯФ СО РАН позволит реализовать перспективный способ создания плазмы с термоядерными параметрами: https://www.atomic-energy.ru/news/2021/12/29/120726.
- Термоядерный реактор токамак Т15-МД: мегасайенс-проект с уникальными характеристиками
https://www.gazeta.ru/social/2021/12/24/14344207.shtml.

Отдельной строкой...
- Китайский токамак EAST смог удержать плазму с температурой в 70 миллионов градусов на протяжении более 1000 секунд: https://www.atomic-energy.ru/news/2022/01/10/120788, https://lenta.ru/news/2022/01/03/chinese_sun/, https://www.bbc.com/russian/features-59875405, https://tvzvezda.ru/news/20221111743-eGeGV.html.
-- Первоисточник: http://russian.news.cn/2021-12/31/c_1310404330.htm.
--- Предыстория на Форуме здесь: http://www.termoyadu.net/index.php?topic=7.msg113#msg113.
- Ранее почти такой же результат (16,7 минут!) был достигнут на токамаке HL-2M
https://shraibikus.com/1136683-568521136683.html?utm_source=yxnews&utm_medium=desktop.
-- Предыстория этого токамака здесь: http://russian.news.cn/2020-12/04/c_139563830.htm,
https://hi-tech.mail.ru/review/iskusstvennoe-solnce/, https://www.hmong.press/wiki/HL-2M.
- Критика: https://360tv.ru/news/tekst/kitajskie-uchenye-zazhgli-iskusstvennoe-solntse-oni-zhazhdut-neogranichennoj-energii-no-ekonomike-eto-ne-pomozhet/.

Ещё новости...
- Новый прототип канадского термоядерного стартапа General Fusion успешно продемонстрировал технологию сжатия плазмы: https://www.atomic-energy.ru/news/2022/01/13/120935.
-- Предыстория на Форуме здесь: http://www.termoyadu.net/index.php?topic=6.msg3521#msg3521.
--- В США и Канаде созданы консорциумы по термоядерной энергетике
https://www.atomic-energy.ru/news/2022/02/04/121645,
http://atominfo.ru/newsz04/a0608.htm.
- Американские физики утроили эффективность быстрого термоядерного синтеза (лазерный термояд)
https://www.atomic-energy.ru/news/2022/01/28/121399, https://mir24.tv/news/16493881/lazery-i-goryashchaya-plazma-uchenye-iz-ssha-ustanovili-rekord-termoyadernogo-sinteza.
-- На термоядерной установке NIF впервые была получена "горящая плазма"
https://www.atomic-energy.ru/news/2022/02/01/121495.
--- Предыдущее сообщение о лазерном термояде на Форуме здесь:
http://www.termoyadu.net/index.php?topic=6.msg3535#msg3535.
« Последнее редактирование: 07 Февраля 2022, 02:38:00 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2128


Просмотр профиля
« Ответ #201 : 11 Февраля 2022, 11:09:17 »

О токамаке JET...
Объединенный европейский токамак JET удвоил предыдущий рекорд 1997 года произведя 59 мегаджоулей тепловой энергии в течение пяти секунд

9 февраля 2022

Британские ученые на Объединенном европейском токамаке JET удвоили свой предыдущий рекорд, произведя в общей сложности 59 мегаджоулей тепловой энергии от термоядерного синтеза в течение пяти секунд.

    "Это достижение – результат многолетней подготовки... Этот рекорд, а главное то, что мы узнали о термоядерном синтезе в этих условиях, и то, что он полностью подтверждает наши прогнозы, показывает, что мы находимся на правильном пути к будущему миру экологически чистой термоядерной энергетики", - сказал руководитель научной программы EUROfusion Тони Донн, - "Если мы можем поддерживать термоядерную реакцию в течение пяти секунд, то мы сможем делать это и в течение пяти минут, а затем и пяти часов по мере расширения масштаба наших операций в будущих установках".

Исследователи из консорциума EUROforum - 4800 экспертов, студентов и сотрудников со всей Европы, софинансируемых Европейской комиссией - более чем вдвое превысили предыдущий рекорд, установленный в 1997 году на данном объекте Управления по атомной энергии Великобритании (UKAEA) вблизи Оксфорда.

Объединенный европейский токамак JET является крупнейшей и самой мощной действующей термоядерной установкой в мире, где температура может достигать уровней в 10 раз более высоких, чем в центре Солнца.

Эти последние результаты токамака JET  рассматриваются как значительный толчок для проекта Международного термоядерного экспериментального реактора ITER, который является более крупным многонациональным исследовательским проектом по термоядерному синтезу, базирующимся на юге Франции. ITER возводится при поддержке Европейского Союза, Китая, Индии, Японии, России и США, его целью является дальнейшая демонстрация научной и технологической осуществимости термоядерного синтеза.

    "Устойчивый импульс дейтерий-тритиевого синтеза на таком уровне мощности - почти в промышленных масштабах - является убедительным подтверждением для всех, кто участвует в глобальных термоядерных исследованиях”, - отметил генеральный директор ITER Бернар Биго, - “Для проекта ITER результаты JET – это мощный стимул для уверенности в том, что мы находимся на правильном пути, продвигаясь вперед к демонстрации полного потенциала термоядерной энергетики".

    "Эти знаменательные результаты сделали нас на огромный шаг ближе к решению одной из самых больших научных инженерных задач. Это награда за более чем 20 лет исследований и экспериментов с нашими партнерами со всей Европы", - отметил генеральный директор UKAEA Иэн Чепмен.

Министр науки, исследований и инноваций Великобритании Джордж Фриман сказал, что "эпохальные результаты" показывают, что "новаторские исследования и инновации, проводимые здесь, в Великобритании, и в сотрудничестве с нашими партнерами по всей Европе, делают термоядерную энергетику реальностью".

Научная работа на установке JET рассматривается как "жизненно важный испытательный стенд" для ITER и будущих термоядерных электростанций, которые планируют использовать ту же смесь дейтерий-тритиевого топлива и работать в аналогичных условиях.

Согласно текущему графику, первая плазма в ITER будет запущена в декабре 2025 года, а его работа на дейтерий-тритиевом топливе начнется в 2035 году. В Европейском соглашении о развитии термоядерной энергетики обозначена цель обеспечить подачу термоядерной электроэнергии в сеть к 2050 году.

https://www.atomic-energy.ru/news/2022/02/09/121793,
http://www.proatom.ru/modules.php?name=News&file=article&sid=9971,
https://mir24.tv/news/16495845/britanskie-uchenye-ustanovili-novyi-mirovoi-rekord-termoyadernogo-sinteza.

Из комментариев...

- Прорыв ?

- Дежавю!

- Очередная лажа....Улыбающийся КПД не указан, пока ни у одной версии уже созданного термояда кпд не превысил единицы. Время от времени термоядерщики запускают такие мульки, чтобы им ещё денег давали.... Улыбающийся

- Все еще жду безубытка
 -----------------
 На реакторе потребляющем 700 мегаватт получили 58 МегаВатт. Надо же какой успех.... Улыбающийся

Несмотря на более высокий уровень мощности, реактор JET по-прежнему потреблял 98% потребляемой мощности, как и 25 лет назад.
 Реактор, по словам Ника Холлоуэя , бывшего представителя UKAEA, потребляет электроэнергии в размере 700 мегаватт.
Документ EURATOM 1982 года , хранящийся в Архиве европейской интеграции Университета Питтсбурга, подтверждает это значение.
 Это не помешало UKAEA делать смелые заявления. «Объявленные сегодня рекордные результаты являются самой наглядной демонстрацией во всем мире потенциала термоядерной энергии для обеспечения безопасной и устойчивой низкоуглеродной энергии», — говорится в сегодняшнем пресс-релизе UKAEA.
 В течение 70 лет ученые-ядерщики обещали, что когда-нибудь термоядерный реактор будет производить больше энергии или мощности, чем потребляет. Мы все еще ждем.аже первая необходимая веха не была достигнута в реакторах токамака. Это называется «научной безубыточностью», и это происходит, когда реакции синтеза производят больше тепловой энергии, чем тепловая мощность, вводимая в топливо.
 Следующей необходимой вехой станет «инженерная безубыточность», когда термоядерный реактор (а не только термоядерная реакция) вырабатывает энергию с большей скоростью, чем потребляет.

- Более 50-ти лет рапортуют об успехах в области термояда, вот-вот в ближайшие 20 лет проблема будет полностью решена, а мир на всегда решит энергетическую проблему. Стабильно обещают через 20 лет ... .

http://www.proatom.ru/modules.php?name=News&file=article&sid=9971.

Для справки...
Космическое враньё. Почему термоядерный реактор не могут построить уже 50 лет
https://hi-tech.mail.ru/review/termoyadernyj_reaktor/.

Подытоживая...
Точка безубыточности на JET так и не была достигнута. Это факт, несмотря на более чем длительную подготовку: https://www.iter.org/multilingual/rf/2/59, http://www.termoyadu.net/index.php?topic=7.msg2704#msg2704.
Повторюсь. Работа на D-T смеси сопровождается повышенным потоком высокоэнергетических нейтронов, приводящих к недопустимому уровню ионизации конструкций токамака и выходу его из строя, как в своё время американского токамака TFTR. Поэтому, кто будучи в здравом уме рискнёт проводить эксперименты с D-T смесью, памятуя о том, что это чревато выходом из строя энергетической установки. Печальный опыт с TFTR (да и с собственно JET!) не остался забытым: https://www.rulit.me/books/gazeta-zavtra-48-1200-2016-read-458856-28.html.
Таким образом, роль самоубийцы перешла к ИТЭРу, но его работа на дейтерий-тритиевом топливе начнется лишь в 2035 году. А к тому времени, как известно, "или падишах умрёт, или ишак сдохнет!" Грустный.
                                                                                                                                                    Ф.Ялышев
P.S. Похоже, "ишак уже сдох": Французский регулятор приостановил сборку реактора ИТЭР
Стивен Б. Кривит
21 февраля 2022 г.
По данным французского органа по ядерной безопасности Autorité de Sûreté Nucléaire (ASN), сборка активной зоны реактора Международного термоядерного экспериментального реактора (ИТЭР) приостановлена: http://lenr.seplm.ru/novosti/frantsuzskii-regulyator-priostanovil-sborku-reaktora-iter,
https://www.gazeta.ru/science/news/2022/02/22/17326927.shtml,
https://news.rambler.ru/science/48181160-smi-frantsuzskie-vlasti-priostanovili-sborku-reaktora-iter/,
http://news.newenergytimes.net/2022/02/21/french-regulator-halts-assembly-of-iter-reactor/.

P.P.S. Впрочем, ожидаемо появились и опровержения:
В Росатоме опровергли остановку сборки Международного экспериментального реактора во Франции
https://www.gazeta.ru/science/news/2022/02/22/17328139.shtml.

Другие новости...
- Лазерные разработки РФЯЦ-ВНИИЭФ будут продолжены в создаваемом Физико-математическом центре
https://www.atomic-energy.ru/news/2022/03/04/122496.
- Росатом планирует расширить исследования в области термоядерных и плазменных технологий
https://www.atomic-energy.ru/news/2022/03/04/122518,
http://atominfo.ru/newsz04/a0695.htm.
« Последнее редактирование: 05 Марта 2022, 19:56:22 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2128


Просмотр профиля
« Ответ #202 : 09 Марта 2022, 15:31:48 »

Правительство РФ выделит Минобрнауки, Росатому и Курчатовскому институту дополнительные 5 млрд рублей на разработку технологий управляемого термоядерного синтеза

7 марта 2022

На реализацию комплексной программы «Развитие техники, технологий и научных исследований в области использования атомной энергии в Российской Федерации на период до 2024 года» из резервного фонда Правительства будет выделено 5 млрд рублей. Такое распоряжение подписал Председатель Правительства Михаил Мишустин.

Дополнительные ассигнования планируется направить на разработку технологий управляемого термоядерного синтеза и инновационных плазменных технологий.

Бюджетные средства получит Минобрнауки – ему планируется выделить почти 3 млрд рублей, а также госкорпорация «Росатом» и Национальный исследовательский центр «Курчатовский институт», которые получат по 1 млрд.

В мае прошлого года в Курчатовском институте при участии Михаила Мишустина была запущена термоядерная установка токамак Т-15МД. С её помощью учёные хотят изучить способы получения термоядерной энергии.

    «Думаю, у вас есть очень много идей. Мы как раз сегодня отмечали, что управляемый термоядерный синтез может стать неиссякаемым источником энергии, чистой, надёжной энергии. Об этом мечтают учёные всего мира», – отметил Председатель Правительства.

По его словам, исследование термоядерной энергии даст мощный толчок развитию энергетики, материаловедения и целого ряда смежных отраслей промышленности.

https://www.atomic-energy.ru/news/2022/03/07/122587,
http://atominfo.ru/newsz04/a0708.htm.

P.S. Вслед за РФ финансирование термояда осуществлили и в США: "Министр энергетики США Дженнифер Грэнхолм, выступая на совещании в Белом доме, объявила о выделении до 50 миллионов долларов из федерального бюджета для поддержки исследовательских проектов по термоядерной энергетике": https://www.atomic-energy.ru/news/2022/03/23/123031. В пересчёте на рубли по курсу за 1 доллар 100 рублей это те же самые 5 млрд рублей!.
Термояд до сих пор будоражит умы апологетов энергетического рая, в том числе и молодёжи, готовых ждать этого хоть ещё 100 лет: "Термоядерный синтез: бесконечный источник энергии уже рядом с нами": https://radiosputnik.ria.ru/20220321/termoyadernaya-energiya-1779182862.html.
                                                                                                                                   Ф.Ялышев

Другие новости...
- Термоядерный стартап Tokamak Energy установил мировой рекорд достигнув 100-миллионной температуры плазмы в малом сферическом токамаке ST40: https://www.atomic-energy.ru/news/2022/03/10/122682.
- Электромагниты, не нуждающиеся в изоляции, приблизят эру термоядерной энергетики
https://www.atomic-energy.ru/news/2022/03/14/122756.
= В научном институте Росатома создали импульсный ускоритель плазмы для будущей исследовательской ядерной установки: http://atominfo.ru/newsz04/a0760.htm, https://www.atomic-energy.ru/news/2022/03/21/122947.
- Санкции против России поставили под угрозу создание термоядерного реактора в США
https://lenta.ru/news/2022/03/22/reactor/,
https://www.gazeta.ru/tech/news/2022/03/22/17459131.shtml.
« Последнее редактирование: 25 Марта 2022, 21:14:01 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2128


Просмотр профиля
« Ответ #203 : 01 Апреля 2022, 07:00:49 »

В ход пошли столетия...
Термоядерный синтез: бесконечный источник энергии уже рядом с нами

21.03.2022

Можно ли получить экологически чистую, практически неиссякаемую энергию? 70 лет назад советские ученые ответили положительно на этот вопрос. Сейчас как никогда наука близка и к практическому воплощению. В Курчатовском институте запущен новый токамак Т-15 МД, уникальный по своим возможностям.

Самое ожидаемое событие в научном сообществе – ввод в эксплуатацию международного экспериментального термоядерного реактора ИТЭР. Эта установка будет содержать в себе энергии больше, чем есть на всей Земле. Курчатовский институт, в котором запущен токамак Т-15 МД, сотрудничает с проектом и решает фундаментальные задачи, например, исследование турбулентности плазмы. Кроме теории есть не менее важные и сложные инженерные задачи: как обеспечить удержание высокотемпературной плазмы в реакторе и не позволить ей расплавить все вокруг.

Что такое Токамак?

Токамак – это установка удержания плазмы с помощью мощных магнитов. Электрический ток генерирует магнитное поле, одновременно обеспечивая и разогрев плазмы, и удержание ее в этом состоянии. Сам термин “токамак” был придуман в Советском Союзе в 50-х годах Игорем Головиным, учеником академика Курчатова. Токамак расшифровывается как "тороидальная камера с магнитными катушками". Первый такой реактор был создан в 1954 году, и на протяжении долгих лет подобные устройства существовали исключительно на территории СССР.

Говорят, что токамак – искусственное солнце. Насколько это близко к истине?

Есть существенная разница между процессами, протекающими в звездах, и процессами внутри замкнутых магнитных ловушек, к которым относится токамак. В ядре Солнца удержание горячих частиц происходит за счет огромной силы гравитации, а в магнитных ловушках магнитное поле удерживает разогретый до огромных температур газ. В токамаке температура в сотни и даже тысячи раз выше, чем на Солнце. Сравним: температура поверхности Солнца составляет около 5-6 тысяч градусов, а в центре звезды – 10-15 миллионов градусов, тогда как в термоядерном реакторе требуемая температура – 100-150 миллионов градусов. Такие показатели и даже выше уже были получены в ходе экспериментов.

Может ли произойти авария и все выйдет из-под контроля?

Термоядерная реакция не является цепной, то есть не может поддерживать сама себя, как, например, в атомных реакторах реакция распада. Для ее поддержания необходимо создать весьма специфичные условия. Это означает, что при выходе из строя одной из систем термоядерного реактора, обеспечивающей поддержание этих условий, реакция сразу же прекратится. Токамак остынет, топливо – водород и гелий – разлетится, не причиняя никому вреда. Единственное, что может сломаться – установка.

Когда тепловые и атомные электростанции заменят на термоядерные?

Все зависит от того, как будет развиваться отрасль: удастся ли эффективно замкнуть цикл, чтобы термоядерная реакция происходила достаточно долго и отдавала тепло на внешние устройства. Сейчас цикл термоядерных реакций длится доли секунд, этого недостаточно для того, чтобы получить энергию. Кроме того, лучший коэффициент полезного действия, который получили ученые в экспериментах – около единицы. Это значит, что производится энергии столько же, сколько и затрачивается. Этого очень мало.

"Самый реалистичный прогноз перехода на термоядерную энергию – столетие. Если мы рассмотрим дорожную карту больших экспериментов, таких как ИТЭР, мы увидим, что в 2025-2030 годах начнут проводить эксперименты. Плюс, если все будет успешно, еще минимум 20 лет эти эксперименты будут идти. Параллельно будут внедрять новые идеи и изобретения, например, компактный реактор. Затем построят демо-реактор, по величине больше чем ИТЭР, и это займет не менее 30-40 лет. Таким образом, практические результаты мы получим не раньше, чем через 100 лет", – считает Михаил Драбинский, младший научный сотрудник отдела токамаков Курчатовского института.

https://radiosputnik.ria.ru/20220321/termoyadernaya-energiya-1779182862.html.

В дополнение...
- Термоядерный синтез с магнитным удержанием плазмы в токамаках и стеллараторах
https://www.atomic-energy.ru/technology/123435.

P.S. Повторюсь. "Термояд был изначально «мертворожденным» и держался до сих пор лишь
на авторитете отцов-основателей и бесконтрольности выделяемых на исследования бюджетных средств": http://www.termoyadu.net/index.php?topic=2.msg120#msg120.
Было это сказано ещё 15 лет тому назад и ничего с тех пор не изменилось. Разве что вместо десятилетий пошли в ход столетия. Ну это излюбленный приём лоббистов любой провальной идеи: отодвигать сроки!
Альтернатива термояду - атомная энергетика с реакторами на быстрых нейтронах (см. статью "Кому нужна термоядерная энергетика?": http://www.termoyadu.net/index.php?topic=6.msg2768#msg2768). В нашей стране такие реакторы успешно эксплуатируются на Белоярской АЭС, при этом энергоблок №3 с реактором БН-600 только в прошлом месяце выработал 304,915 миллиона кВт×ч, а энергоблок №4 с реактором БН-800 - 648,759 миллиона кВт×ч: http://atominfo.ru/newsz04/a0845.htm. Как видим, никакие не сто лет, а прямо сегодня и сейчас!

P.P.S. Что касается токамака Т-15МД, то его главное предназначение - отработка возможности создания гибридного реактора (см. статью "Гибридное будущее термояда": http://www.termoyadu.net/index.php?topic=6.msg3424#msg3424). Создание опытного образца такого реактора запланировано на 2035-е годы. Параллельно на Т-15МД будут проводится и эксперименты в области "чистого" термояда, однако потолок (тупик!) в этом направлении, достигнутый совсем недавно европейским токамаком JET, преодолеть удастся едва ли: http://www.termoyadu.net/index.php?topic=6.msg3552#msg3552.

P.P.P.S. Ну, а надежды, связанные с ИТЭР, могут в одночасье рухнуть по причине "заморозки" этого Проекта или его банального закрытия. Первые признаки этого сценария уже проявляются: http://www.termoyadu.net/index.php?topic=7.msg3553#msg3553.

                                                                                                                           Ф.Ялышев

Другие новости...
- Австралийский стартап HB11 Energy представил новую лазерную технологию термоядерного синтеза. Пока только идея. Сроки изготовления экспериментальной установки не обозначены:
https://www.atomic-energy.ru/news/2022/04/01/123344.
- Британский стартап First Light Fusion сообщил подробности о своей инновационной технологии термоядерного синтеза. Экспериментальная установка должна быть введена в эксплуатацию в 2030-х годах:
https://www.atomic-energy.ru/news/2022/04/08/123619.
- Троицкий ТРИНИТИ начал подготовку площадки для строительства к 2030 году прототипа будущего термоядерного реактора. Он будет построен на месте существующего токамака с сильным полем (ТСП). Его новое название - Токамак с реакторными технологиями (ТРТ): https://www.atomic-energy.ru/news/2022/04/08/123626.
-- Этот токамак включён в план реализации комплексной программы РТТН по атомным технологиям:
https://www.atomic-energy.ru/news/2022/04/18/123956.
--- Другие разработки ТРИНИТИ: Термоядерное будущее в деталях: что создают в ТРИНИТИ в рамках атомного нацпроекта: https://www.atomic-energy.ru/photo/123078.
- В Великобритании выбраны разработчики защитного экрана для сферического токамака STEP - прототипа первой термоядерной электростанции. Концептуальный проект реактора должен быть готов к 2040 году, а после ещё состоится более детальное проектирование: https://www.atomic-energy.ru/news/2022/04/13/123791.

Ещё один блок новостей...
- Японский стартап по лазерному синтезу собрал более 1 млн долларов. Идея старая - лазерный термояд. Наиболее известная экспериментальная установка - национальный комплекс лазерных термоядерных реакций (National Ignition Facility, NIF, США): http://atominfo.ru/newsz04/a0946.htm, http://www.termoyadu.net/index.php?topic=6.msg3535#msg3535.
- Мировое развитие демонстрационных термоядерных энергетических установок DEMO
https://www.atomic-energy.ru/articles/2022/04/21/124063.
-- Мировые лидеры в термоядерной энергетике 
https://www.atomic-energy.ru/video/122814.
« Последнее редактирование: 29 Апреля 2022, 11:46:08 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2128


Просмотр профиля
« Ответ #204 : 28 Апреля 2022, 17:27:44 »

Снова про срыв плазмы...
Пылающая плазма – важнейший шаг на пути к термоядерной энергетике

4 февраля 2022

Идеальные условия для термоядерного синтеза существуют внутри солнечного ядра — это экстремально высокие температуры и огромное давление, создаваемое мощными силами гравитации.

Однако попытки воссоздания этих условий на Земле с помощью термоядерного реактора в отсутствие сильнейших гравитационных сил, присущих звездам, влекут за собой множество технических проблем. Самая большая из них — это поддержание термоядерной плазмы (заряженного газа, состоящего из ионов и свободных электронов, в котором происходит реакция) в нагретом состоянии при температуре более 100 миллионов градусов Цельсия, удержание ее частиц в магнитном поле и сближение их друг с другом на достаточно продолжительное время для того, чтобы они могли вступить в реакцию и высвободить энергию.

Понимание и проверка существующих гипотез о том, как ведет себя эта горячая термоядерная плазма, являются одними из ключевых вопросов, которые должны решить ученые и инженеры по термоядерному синтезу, чтобы в конечном итоге произвести электричество при помощи термоядерного синтеза.

    "ИТЭР предоставит нам возможность изучения "пылающей плазмы", в которой не менее 66 процентов всего нагрева будет происходить за счет синтеза альфа-частиц", - Альберто Лоарте, руководитель научного отдела Организации ИТЭР

Супертопливо для температур, превышающих температуру Солнца

Выбор топлива для термоядерного синтеза ограничен. Топливо, обладающее самым высоким потенциалом производительности на Земле, изготавливается из смеси ионов дейтерия и трития — двух более тяжелых форм водорода. При столкновении при экстремально высоких температурах происходит синтез дейтерия и трития с образованием заряженных частиц, состоящих из двух протонов и двух нейтронов, известных как альфа-частицы, а также свободных нейтронов. В то время как нейтроны выходят из магнитного поля и не взаимодействуют с плазмой, альфа-частицы удерживаются магнитным полем и дополнительно нагревают окружающую плазму.

    «Управление этим нагревом имеет решающее значение для возможности использования термоядерной энергии», — говорит профессор Австралийского национального университета Мэтью Хоул.

Безопасная и устойчивая термоядерная энергетика полагается на эти заряженные альфа-частицы и их энергию для поддержания постоянной температуры нагрева плазмы, что позволяет реакциям быть самоподдерживающимися. Достижение этого условия имеет решающее значение для эксплуатации термоядерного реактора.

В 1990-х годах экспериментальные термоядерные реакторы производили до 16 мегаватт (МВт) мощности в течение периода времени продолжительностью менее секунды. В ходе тех экспериментов альфа-частицами обеспечивалось лишь около десяти процентов нагрева, а остальное — внешними нагревателями. Понимание того, что происходит, когда альфа-частицы обеспечивают большую часть нагрева, будет приобретаться в ходе реализации инициатив, подобных ИТЭР — международного экспериментального реактора, сооружение которого ведется на территории Франции.

    «ИТЭР предоставит нам возможность изучения "пылающей плазмы", в которой не менее 66 процентов всего нагрева будет происходить за счет синтеза альфа-частиц. В этих условиях ИТЭР будет производить 500 МВт термоядерной энергии в течение периода времени продолжительностью до 500 секунд», — объясняет руководитель научного отдела Организации ИТЭР Альберто Лоарте.

По его словам, эксперименты, которые будет проводить эта организация, дадут столь необходимые ответы на такие ключевые вопросы физики пылающей плазмы, как способы создания плазмы, которая самоподдерживается за счет внутреннего нагрева собственными альфа-частицами, и выбор оптимальных эксплуатационных условий для высоко-производительного термоядерного синтеза, совместимых с возможностями стенки реактора по преобразованию энергии.

Как сделать плазму самоподдерживающейся

Важным показателем производительности термоядерного реактора является его «коэффициент усиления термоядерной энергии», который определяется температурой, плотностью и временем удержания энергии плазмы — мерой эффективности поддержания магнитным полем энергии плазмы с течением времени. Для создания самоподдерживающейся реакции требуются три условия: температура около 100 миллионов градусов Цельсия; плотность, которая в миллион раз меньше плотности воздуха; и удержание энергии в течение периода времени продолжительностью всего несколько секунд.

Хотя необходимые условия хорошо понятны, способ их одновременного достижения далеко не очевиден. Например, увеличение плотности плазмы в принципе выгодно, поскольку оно увеличивает вероятность реакций синтеза. Однако, по словам заместителя директора по термоядерному синтезу в Принстонской лаборатории физики плазмы в Соединенных Штатах Америки Ричарда Гаврилюка, как показывают многие эксперименты, по мере приближения плотности к максимуму удержание плазмы работает хуже, чем предполагалось.

Для успеха эксперимента ИТЭР необходимо найти решения этих проблем, а большая часть таких исследований возможна только в рамках международного сотрудничества. Технические совещания МАГАТЭ по вопросам физики энергетических частиц, управления плазмой, а также сбора, проверки и анализа данных о термоядерном синтезе обеспечивают площадку для обмена научными и техническими результатами и помогают разрабатывать инструменты моделирования, которые могут быть использованы для прогнозирования поведения термоядерной плазмы в ИТЭР и будущих термоядерных энергетических реакторах.

Поиск оптимальных условий

Одна из самых сложных задач — это найти оптимальные условия эксплуатации с обеспечением максимальной мощности термоядерного синтеза и управления плазмой, которые бы создавали возможности высокой производительности без нарушения эксплуатационных границ в течение длительных периодов времени. Нарушение эксплуатационных границ проблематично, поскольку это может вызвать нестабильность, которая может привести к разрушению плазмы в результате явления, известного как «срыв плазмы».

    «В тороидальном реакторе типа токамака, таком как ИТЭР, в результате срыва за несколько миллисекунд может произойти стремительное разрушение плазмы и возникнуть значительное тепловое и механическое напряжение компонентов реактора, — объясняет научный координатор секции стабильности и управления Организации ИТЭР Майкл Ленен. — МАГАТЭ помогает избежать этого сценария, содействуя обмену информацией об экспериментальных и теоретических работах, а также моделировании в этой области, уделяя особое внимание в ближайшие несколько лет разработке прочной основы для создания конструкции системы ИТЭР для предотвращения срывов».

Недавние эксперименты и работы по моделированию, включающие методы, основанные на искусственном интеллекте, проливают свет на требуемые условия для обеспечения эффективного управления плазмой, помогая проложить путь к безопасному проектированию и эксплуатации будущих термоядерных электростанций.

    «Применение высокопроизводительных усовершенствованных статистических методов и подходов на основе машинного обучения к исследованию срывов может помочь выявить существенные закономерности и раскрыть информацию, которая скрывается в накопленных за годы экспериментальных данных», — говорит научный сотрудник Центра науки и синтеза плазмы Массачусетского технологического института (МТИ) Кристина Ри.

При разработке новых решений, позволяющих избежать нарушения границ, возникает продуктивная синергия между физиками, занимающимися теорией управления, специалистами по моделированию, разработчиками сценариев и инженерами по обработке данных. Необходимо провести дополнительную работу по оценке применимости этих методологий, основанных на данных, для таких проектов, как ИТЭР, однако результаты, по словам Ри, уже являются обнадеживающими.

Источник: МАГАТЭ

https://www.atomic-energy.ru/articles/2022/02/03/121611.

P.S. На этом Форуме про срыв плазмы говорилось изначально: "Главная проблема ТОКАМАКов заключается в том, что кольцевой плазменный шнур с параметрами, достаточными для протекания термоядерных реакций, не удерживается во времени. По различным причинам плазма в тороидальной камере ТОКАМАКов быстро охлаждается и гибнет на наружной стенке тороидальной камеры. Это явление у специалистов называется «срывом плазмы»"...: http://www.termoyadu.net/index.php?topic=7.msg113#msg113. Как видим, проблема по истечении 15 лет так и остаётся проблемой, возможно, что и навсегда. То есть, неразрешимой по сути и являющейся неотъемлемым свойством концентрированной высокотемпературной плазмы как таковой!

P.P.S. Спрашивается, а как быть с достижением китайцев, сумевших-таки удержать плазму в течении более 1000 секунд (17 минут!)? А очень просто. Плазма разрежена, её плотность (концентрация) далека от требуемой для протекания термоядерной реакции, да и температура сравнительно невысока - всего 70 млн градусов: https://www.atomic-energy.ru/news/2022/01/10/120788.

                                                                                                                                Ф.Ялышев
« Последнее редактирование: 29 Апреля 2022, 12:22:52 от Avtor » Записан
Avtor
Администратор
Ветеран
*****
Сообщений: 2128


Просмотр профиля
« Ответ #205 : 30 Апреля 2022, 08:50:21 »

Мировое развитие демонстрационных термоядерных энергетических установок DEMO

21 апреля 2022

Цель ИТЭР — крупнейшего в мире экспериментального проекта в области термоядерного синтеза — состоит в том, чтобы доказать возможность выработки нетто-энергии в результате термоядерной реакции. Следующим важным шагом станет демонстрация возможности производства нетто-электроэнергии из термоядерной энергии. Именно для этого нужны DEMO — демонстрационные термоядерные энергетические установки.

Реакторы типа DEMO — это скорее концептуальные проекты, а не конкретные конфигурации термоядерных устройств. Предварительные конструкции финансируемых за счет государственных средств DEMO, создаваемых в нескольких странах, еще предстоит доработать. Это будет сделано после получения результатов экспериментов на ИТЭР.

Планируется, что DEMO будут функционировать почти непрерывно, а чистый прирост электроэнергии будет составлять более 50 мегаватт (МВт). Ключевая проблема, которую они призваны решить, заключается в том, как поддерживать стабильность термоядерной плазмы в течение достаточно длительного времени, чтобы производить энергию на постоянной основе.

Хотя многие решения относительно DEMO еще не приняты, обеспеченный государственным финансированием DEMO, скорее всего, будет представлять собой реактор типа токамак, и в качестве топлива в нем будут использоваться тяжелые изотопы водорода — дейтерий и тритий. Однако доступные мировые запасы трития невелики, поэтому сами DEMO должны будут производить тритий в достаточном количестве с помощью так называемых бланкетов, предназначенных для воспроизводства и извлечения трития. Сеила Гонсалес де Висенте, физик — специалист по термоядерному синтезу в МАГАТЭ, говорит, что также предстоит решить проблемы, связанные с подачей, улавливанием, удержанием, извлечением и отделением трития.

Еще одним важным отличием реакторов типа DEMO от существующих экспериментальных реакторов будет добавление систем и использование технологий поглощения термоядерной энергии и ее преобразования в электроэнергию.

    «Для установок типа DEMO необходимо разработать и интегрировать сложные элементы и системы, которых нет на существующих экспериментальных термоядерных устройствах. Требуются, в частности, такие элементы, как бланкеты для воспроизводства трития, системы генерации электроэнергии и системы контроля горения, — рассказывает Элизабет Сарри, глава Отдела технологий Управления по атомной энергии Соединенного Королевства. — Условия работы DEMO особенно неблагоприятны для материалов, поскольку горящая плазма создает большой поток нейтронов и высокую плотность энергии на стенках. Для DEMO требуется разрабатывать новые материалы и технологии».

Роль МАГАТЭ

Концепции DEMO и подходы к их реализации изучают группы исследователей в разных странах. МАГАТЭ содействует международной координации и обмену наилучшей практикой, проводя технические совещания и — с 2012 года — регулярные семинары-практикумы по программе DEMO. Они позволяют обсуждать физико-технические вопросы, обмениваться стратегиями осуществления программ DEMO и анализировать возможные варианты действий. Со временем акцент сместился с общих концепций на конкретные технические проблемы, которые необходимо решить.

    «На технических совещаниях МАГАТЭ и семинарах-практикумах по программе DEMO внимание сосредоточено на выявлении проблем и обсуждении проводимых научно-исследовательских и опытно-конструкторских работ, что позволяет нам совместно определять потребности и анализировать возможные решения. Один из примеров — появление серьезной проблемы управления плазмой на установках типа DEMO, когда требуется длительное или почти непрерывное удержание плазмы», — объясняет Сарри, выполнявшая функции председателя на последних трех семинарах-практикумах по программе DEMO в 2016–2019 годах.

Планы по всему миру

Хотя все еще рассматриваются различные варианты производства электроэнергии с помощью термоядерного синтеза, научно-технические вопросы, которые предстоит решить, в целом согласованы. Разные страны установили различные сроки, но общий консенсус среди ученых заключается в том, что они могут построить и ввести в эксплуатацию реактор типа DEMO, вырабатывающий электроэнергию, к 2050 году.

В Китае был достигнут существенный прогресс в планировании строительства Китайского испытательного термоядерного реактора (CFETR). Это устройство поможет преодолеть разрыв между ИТЭР и DEMO. Сооружение CFETR начнется в 2020‑е годы, после чего в 2030‑е годы будет построена установка DEMO.

В Европе за разработку DEMO отвечает консорциум EUROfusion. В настоящее время этот проект находится на этапе концептуального проектирования (2021–2027 годы). Он призван продемонстрировать осуществимость термоядерного синтеза с технической и экономической точки зрения путем производства нескольких сот мегаватт нетто-электроэнергии.

Индия объявила о том, что примерно в 2027 году она планирует приступить к сооружению устройства под названием SST-2, предназначенного для проверки концепций и элементов реактора для DEMO, а в 2037 году — к строительству самой установки DEMO.

Японская объединенная специальная проектная группа по термоядерной установке DEMO в настоящее время работает над концептуальным проектом DEMO с непрерывным потоком плазмы (JA DEMO). Строительство этого устройства должно начаться около 2035 года.

В 2012 году Республика Корея начала разработку концептуального проекта установки K-DEMO, намереваясь к 2037 году приступить к ее строительству, а в 2050 году — к производству на ней электроэнергии. На первом этапе (2037–2050 годы) K-DEMO будет использоваться для разработки и тестирования элементов, которые затем будут реализованы в ее конструкции. На втором этапе (после 2050 года) предполагается, что она сможет обеспечить выработку нетто-электроэнергии.

Российская Федерация планирует создать гибридную установку синтеза-деления с термоядерным источником нейтронов (ДЕМО-ТИН), в которой полученные в результате термоядерного синтеза нейтроны будут использоваться для преобразования урана в ядерное топливо и ликвидации радиоактивных отходов. ДЕМО-ТИН планируется построить к 2023 году в рамках национальной ускоренной стратегии по созданию термоядерной электростанции к 2050 году.

Эксперты по термоядерному синтезу в Соединенных Штатах Америки недавно опубликовали два доклада, в которых рекомендуется начать национальную научно-техническую программу, предусматривающую налаживание государственно-частного партнерства, чтобы в конечном итоге сделать термоядерный синтез коммерчески рентабельным. Этого планируется достичь в период 2035–2040 годов, чтобы сделать страну одним из лидеров в области термоядерного синтеза и ускорить ее переход к низкоуглеродной энергетике к 2050 году.

Параллельно с этим многочисленные коммерческие предприятия, получающие средства из частных источников, также делают успехи в развитии концепций термоядерных электростанций, опираясь на ноу-хау, появившиеся за годы научно-исследовательских и опытно-конструкторских работ, финансируемых государствами, и предлагая еще более амбициозные сроки.

Источник: МАГАТЭ

https://www.atomic-energy.ru/articles/2022/04/21/124063.

Для справки...
МАГАТЭ создаёт краудсорсинговую базу данных по термоядерным проектам
https://www.atomic-energy.ru/news/2020/12/28/110203.

P.S. Мировые лидеры в термоядерной энергетике  
https://www.atomic-energy.ru/video/122814.
- История и перспективы термоядерных исследований в Индии
https://www.atomic-energy.ru/articles/2022/04/29/124338.

P.P.S. Согласованный срок построения и введения в эксплуатацию реактора типа DEMO, вырабатывающего электроэнергию, 2050-е годы. Но в любом случае только после построения ИТЭР и успешных экспериментов на нём.
Ключевым в работе термоядерного реактора является не только достижение, но и превышение точки безубыточности. В реакторах типа токамак это возможно лишь при использовании дейтерий-тритиевой смеси. В своё время к этой точке приблизились (не достигли, а именно только приблизились!) американский TFTR и европейский JET. "Американец" из-за повышенной ионизации конструкций реактора почил в бозе, а "европеец" до сих пор не может очухаться и повторить хотя бы достижение 25-летней давности (1997 года). Впрочем, совсем недавно эксперименты на JET были возобновлены (http://www.termoyadu.net/index.php?topic=6.msg3552#msg3552), но точка безубыточности так и не была достигнута, несмотря на более чем длительную подготовку: https://www.iter.org/multilingual/rf/2/59, http://www.termoyadu.net/index.php?topic=7.msg2704#msg2704.
Повторюсь. Работа на D-T смеси сопровождается повышенным потоком высокоэнергетических нейтронов, приводящих к недопустимому уровню ионизации конструкций токамака и выходу его из строя, как в своё время американского токамака TFTR. Поэтому, кто будучи в здравом уме рискнёт проводить эксперименты с D-T смесью, а уж тем более работать на ней (!), памятуя о том, что это чревато выходом из строя энергетической установки. Печальный опыт с TFTR (да и с собственно JET!) не остался забытым: https://www.rulit.me/books/gazeta-zavtra-48-1200-2016-read-458856-28.html.
Таким образом, роль самоубийцы перешла к ИТЭРу, но его работа на дейтерий-тритиевом топливе начнется лишь в 2035 году. А к тому времени, как известно, "или падишах умрёт, или ишак сдохнет!" Грустный.

P.P.P.S. И, похоже, "ишак" уже "сдох": Французский регулятор приостановил сборку реактора ИТЭР:
http://www.termoyadu.net/index.php?topic=7.msg3553#msg3553.
                                                                                                                                                 Ф.Ялышев

Другие новости...
- ТРИНИТИ создает инфраструктуру для термоядерного реактора нового поколения
http://www.energyland.info/news-show-tek-atom-228031.
« Последнее редактирование: 18 Мая 2022, 10:10:43 от Avtor » Записан
Страниц: 1 ... 12 13 [14]
  Печать  
 
Перейти в:  

Частичная или полная перепечатка материалов сайта Термояду.нет
возможна только с разрешения администрации

© Ялышев Ф.Х. | Powered by SMF 1.1.21 | SMF © 2006, Simple Machines
Rambler's Top100 Рейтинг@Mail.ru