Подводя итоги уходящего года:
В термоядерном синтезе стали сомневаться больше...
Термоядерный синтез: неисчерпаемый источник энергии или величайший фейл в истории науки
10.08.2019
Никифоров Владислав
За последнее столетие человечество совершило удивительный технологический рывок. Мы поднялись в небо, высадились на Луну, создали интернет. Однако, несмотря на очевидные достижения, основным источником энергии для нашей цивилизации остается газ, уголь и нефть. Но запасы их ограничены, к тому же сжигание ископаемого топлива вредит природе и способствует изменениям климата. Одно время панацеей казалась ядерная энергетика, обещавшая обеспечить потребности человечества дешевым электричеством, но этого так и не случилось. А после Чернобыля и Фукусимы стало очевидно, что атомным станциям нужно искать замену.
Альтернатива традиционной энергетике есть – речь идет об управляемом ядерном синтезе. Причем это не какая-то фантастика типа антигравитации или гиперпространства – подобные процессы протекают в недрах всех без исключения звезд, и их теоретические основы прекрасно известны ученым. Несмотря на это, искусственное солнце на Земле пока упорно не хочет зажигаться.
Изначально создание термоядерного реактора казалось простым делом. На заре ядерной эры инженеры полагали, что подобные устройства появятся в течение пяти-десяти лет. С той поры минуло более полувека, но мечты о дешевой и неиссякаемой энергии так и остались мечтами. Сегодня нам опять обещают представить работающий термоядерный реактор к концу следующего десятилетия, но реальны ли эти планы, сказать сложно. На реализацию идеи уже потрачено столько денег и человеческого труда, что данную тему называют самым грандиозным фейлом в истории науки...
Наиболее значимые проектыИТЭРСамым известным и продвинутым проектом в области термоядерного синтеза является ITER, что расшифровывается как International Thermonuclear Experimental Reactor. Его смело можно назвать уникальным: по размерам и технической сложности этот реактор превзойдет все построенное человечеством ранее, включая знаменитый Большой адронный коллайдер. Уже завершены подготовительные работы, и сейчас ведется строительство. Объект расположен на юге Франции, неподалеку от Марселя. Реактор выполнен по схеме «токамак».
ИТЭР должен продемонстрировать практическую возможность термоядерного синтеза. Он не будет вырабатывать электричество: такая возможность просто не заложена в проекте.
Реактор ITER — по-настоящему монструозное сооружение массой в 400 тыс. т с мощнейшей магнитной системой, специальным роботизированным манипулятором, способным поднимать пятидесятитонные грузы, и сложнейшей системой отвода тепла. Энергопотребление объекта – 600 Мвт, что сопоставимо с потребностями небольшого города. Для охлаждения установки будет построен специальный завод по производству жидкого гелия.
Проект настолько масштабен, что для его реализации понадобились совместные усилия ЕС, США, России, Японии и Южной Кореи. Зажечь дейтерий-тритиевую плазму планируют в 2027 году, если, конечно, сроки опять не сдвинутся. Планируется, что в этом реакторе удастся добиться десятикратного (Q=10) превышения выделенной энергии над затраченной.
Прототипом первой коммерческой термоядерной электростанции станет DEMO, запуск первой очереди которой назначен на 2048 год.
JET (Joint European Torus)Это крупнейший в мире действующий термоядерный реактор, предназначенный для изучения процессов, протекающих в высокотемпературной плазме. Установка выполнена по схеме токамак, объем плазмы составляет 100 куб. метров. JET был введен в строй в 1984 году.
За более чем тридцать лет эксплуатации, на этом реакторе был установлен ряд мировых рекордов. Впервые была достигнута температура плазмы в 150 млн градусов и мощность в 16 Мвт с энергоэффективностью Q ~ 0,7.
EASTКитайский токамак, введенный в эксплуатацию в 2006 году. На его счету несколько серьезных достижений. В 2016 году в течение 102 секунд удалось удержать плазму, разогретую до температуры 5×107 К. А в конце прошлого года EAST достиг отметки в 100 млн градусов. Данный эксперимент получил громкое название «искусственное солнце Китая». (Последнее сообщение об "искусственном солнце" здесь:
http://www.termoyadu.net/index.php?topic=6.msg3408#msg3408).
Частные проекты
В последние годы в данной области все активнее участвует частный капитал. Небольшие компании и стартапы считают, что справятся с «термоядерными» проблемами быстрее и эффективнее, чем огромные и забюрократизированные государственные структуры. Все вышеперечисленные проекты направлены исключительно на решение исследовательских задач, бизнес же интересует в первую очередь практическая реализация технологии.
Например, американская компания Commonwealth Fusion Systems (CFS) совместно с учеными из Массачусетского технологического института занимается разработкой токамака Sparc. В финансировании проекта принимает участие фонд Breakthrough Energy Ventures под руководством Билла Гейтса, Джеффа Безоса, Майкла Блумберга. Еще одним спонсором является итальянский энергетический гигант Eni.
Основная задача разработчиков – создание компактного термоядерного реактора, который можно было бы установить на заводе или фабрике. Для этого в установке будет использована технология высокотемпературных сверхпроводников (ВТСП), которая позволяет получать магнитное поле большой напряженности. Она была открыта в 1987 году, поэтому «не успела» на ITER. С помощью ВТСП ученые планируют добиться Q = 13,6, хотя сама установка в 65 раз меньше ИТЭРа.
Еще более амбициозные планы ставит перед собой компания Lockheed Martin. В 2015 году представители компании объявили о прорыве в области управляемого синтеза, и грозятся уже к 2020 году представить миру прототип работающего термоядерного реактора мощностью в 100 мегаватт. Причем он будет не просто компактным, а крошечным – всего два на три метра. Такое устройство легко разместится не только на производственных площадках, но и на кораблях и даже самолетах. Если оно, конечно, существует.
О конструкции революционного реактора мы знаем немного: известно, что плазма удерживается с помощью магнитных зеркал с использованием высокотемпературных сверхпроводников. Работой устройства будет управлять квантовый компьютер D-Wave, купленный компанией несколько лет назад за 12 млн долларов. Такие продвинутые «мозги» позволят системе оперативно реагировать на любые изменения характеристик плазмы. Правда, специалисты относятся к заявлениям Lockheed Martin довольно скептически: слишком уж нереально выглядят характеристики их устройства.
Не менее интересным проектом является термоядерная установка Machine 3, разработкой которой занимается компания FirstLight Fusion в кооперации с Оксфордским университетом. Устройство способно генерировать колоссальный электрический заряд напряжением в 200 тыс. вольт с силой тока в 14 тыс. ампер. С его помощью разработчики планируют добиться устойчивой термоядерной реакции. Запуск Machine 3 намечен на конец 2019 года.
Американский стартап TAE Technologies обещает начать коммерческие поставки термоядерных реакторов через пять лет. Причем не обычных дейтерий-тритиевых, а работающих на смеси водород + бор-11. Это «безнейтронная» реакция, в ходе которой получается безвредный гелий. Более того, электричество в установках можно будет получать прямо из потока заряженных частиц, без теплоносителя и турбин...
Вместо резюме История управляемого синтеза — яркий пример переоценки собственных возможностей. Теоретическая наука блестяще справилась со своей частью задачи, не только отработав саму идею нового способа получения энергии, но просчитав несколько вариантов его реализации. А инженеры, материаловеды и управленцы так и не сумели воплотить ее «в металле». Более того, они даже не смогли оценить всю сложность задачи. Полвека исследований в данной области позволяют нам сделать важные и не слишком утешительные выводы.
Термоядерная энергетика вовсе не является кристально чистой. Единственная доступная сегодня реакция D+T дает такой поток нейтронного излучения, что корпуса реакторов придется менять раз в 5-10 лет. Вероятно, что в ближайшие 10-15 лет мы достигнем показателя Q=20, получив таким образом стабильную термоядерную плазму. Скорее всего, этот рубеж будет преодолен на реакторе ИТЕРа. Однако вряд ли это будет окончательной победой и укрощением «строптивого» термояда. Уже сейчас очевидно, что монструозные проекты типа ITER – это тупиковый путь, малопригодный для практического использования. Гигаватные реакторы подобной конструкции фантастически сложны, они стоят гораздо дороже обычных урановых, а тритий для реакции D + T очень дорог и дефицитен...
https://militaryarms.ru/novye-texnologii/termoyadernyj-sintez/.
В дополнение...
- Глобальные научно-технические фейлы: управляемый термоядерный синтез
http://bramaby.com/ls/blog/science/9446.html.
- Управляемый термоядерный синтез — шарлатанство
http://round-the-world.org/?p=2294,
http://www.termoyadu.net/index.php?topic=6.msg3314#msg3314.
- Миф о термоядерном синтезе
http://www.termoyadu.net/index.php?topic=682.0.
Другие итоги года...
- Крупнейшие отказы космической техники в 2019 году
https://www.gazeta.ru/science/2019/12/25_a_12883412.shtml.
- Роскосмос завершил год без аварий
http://kosmolenta.com/index.php/1519-2018-12-27-roscosmos-year.
- Что ждет космонавтику в 2020 году?
http://kosmolenta.com/index.php/1521-2020-01-01-new-year.